期刊文献+

赋权图的基尔霍夫指标 被引量:2

Kirchhoff index in weighted graphs
下载PDF
导出
摘要 通过对非赋权图的基尔霍夫指标计算公式Kf(G)=n sum from k=1 to n-1 1/(λ_k)适用范围的讨论,利用拉普拉斯矩阵的广义逆理论证明了该公式对于任意连通的赋权图成立,其中λ_k是赋权图的拉普拉斯矩阵的正特征值. The applicable sPhere of Kirchhoff index Kf(G) was discussed, amplified and proved for any connected unweighted graphs. According to the theory of generalized inverse of Laplacian matrix we proved that this closed-form formulae Kf(G)=n∑^n-1 k=1 1/(λk) also held for any connected weighted graph that wasderived from the Laplacian spectrum of the weighted graphs.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期92-93,97,共3页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金(10471058)资助
关键词 电阻距离 赋权图 基尔霍夫指标 拉普拉斯谱 resistance distance weighted graph Kirchhoff index Laplacian spectrum
  • 相关文献

参考文献8

  • 1KLEIN D J, RANDIC M. Resistance distance[J]. J Math Chem, 1993, 12: 81-95.
  • 2ZHANG H P, YANG Y J. Resistance distance and Kirchhoff index in circulant graphs[J]. Int J Quantum Chem, 2007, 107: 330-339.
  • 3YANG Y J, ZHANG H P. Kirchhoff index of linear hexagonal chains[J]. Int J Quantum Chem, 2008, 108: 503-512.
  • 4MERRIS R. Laplacian matrices of graphs: a survey[J]. Linear Algebra Appl, 1994, 197-198: 143- 176.
  • 5GUTMAN I, MOHAR B. The quasi-wiener and the Kirchhoff indices coincid[J]. J Chem Inf Comput Sci, 1996, 36: 982-985.
  • 6BEN-israel A, GREVILLE T N E. Generalized inverses-theory and application[M]. New:York: Wiley, 1974.
  • 7CAMPBELL S L, MEYER C D. Generalized inverses of linear transformations[M]. London: Pitman, 1979.
  • 8张和平.平面二部图的完美匹配集合上的有向根树结构及其生成[J].兰州大学学报(自然科学版),1996,32(3):7-11. 被引量:1

二级参考文献7

  • 1Guo Xiaofeng,J Math Chem,1993年,12卷,163页
  • 2Guo Xiaofeng,J Math Chem,1992年,9卷,279页
  • 3Zhang Fuji,Match,1992年,28卷,289页
  • 4Zhang Fuji,Discrete Appl Math,1991年,32卷,295页
  • 5Jiang W,内蒙古大学学报,1987年,18卷,412页
  • 6He W J,Theorectica Chim Acta,1986年,70卷,447页
  • 7Chen Zhibo,Chem Phys Lett,1985年,15卷,3期,291页

同被引文献13

  • 1LOWDIN P O, PAUNCZ R, HEER DE J. On the calculation of the inverse of the overlap matrix in cyclic systems[J]. J Math Phys, 1960, 1(6): 461-467.
  • 2KALMAN D, WHITE J E. Polynomial equations and circulant matrices[J]. Amer Math Monthly, 2001, 108(9): 821-840.
  • 3KLEIN D J, RANDIC M. Resistance distance[J]. J Math Chem, 1993, 12(1): 81-95.
  • 4XIAO W J, GUTMAN I. Resistance distance and Laplacian spectrum[J]. Theor Chem Acc, 2003, 110(4): 284-289.
  • 5BONCHEV D, BALABAN A T, LIu X, et al. Molecular cyclicity and centricity of polycyclic graphs I : cyclicity based on resistance distances or reciprocal distances[J]. Int J Quantum Chem, 1994, 50(1): 1- 20.
  • 6ZHANG H P, YANG Y J. Resistance distance and Kirchhoff index in circulant graphs[J]. Int J Quantum Chem, 2007, 107(2): 330-339.
  • 7YANG Y J, ZHANG H P. Kirchhoff index of linear hexagonal chains[J]. Int J Quantum Chem, 2008, 108(3): 503-512.
  • 8ZHU H Y, KLEIN D J. Graph-geometric invariants for molecular structures[J]. J Chem Inf Comput Sci, 1996, 36(6): 1067-1075.
  • 9MERRIS R. Laplacian matrix of graphs: a survey[J]. Linear Algebra Appl, 1994, 197-198: 143-176.
  • 10GUTMAN I, MOHAR B. The Quasi-Wiener and the Kirchhoff indices coincide[J]. J Chem Inf Comput Sci, 1996, 36(5): 982-985.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部