期刊文献+

双轴对称固支圆弧拱弯扭屈曲荷载的理论解 被引量:9

THEORETICAL SOLUTION FOR FLEXURAL-TORSIONAL BUCKLING LOAD OF FIXED-END CIRCULAR ARCHES WITH BIAXIALLY-SYMMETRIC CROSS-SECTIONS
下载PDF
导出
摘要 在给出的考虑几何非线性情况下的弹性曲梁总势能的基础上,采用里兹法导出了固支圆弧拱在均匀受压和均匀受弯作用下的弯扭屈曲荷载的理论解,推导中考虑了翘曲刚度的影响。固支圆弧拱在径向均布荷载作用下,屈曲荷载随着拱圆心角的增大而逐渐减小,和简支拱不同,当圆心角为180°时,屈曲荷载并不为零。在正弯矩或负弯矩作用下,固支圆弧拱的屈曲荷载都随着拱圆心角的增大而逐渐增大。该文给出了计算实例,并与其他研究者的结果进行了比较,证明了所得公式的正确性。 Based on the total potential energy of elastic curved beams by considering the geometrical nonlinearity, the theoretic solution for the flexural-torsional buckling load of fixed-end circular arches subjected to uniform compression and bending is deduced with the Retz method, taking the effects of warping rigidity into account. Under the uniform radial load, flexural-torsional buckling load of fixed-end circular arches decreases as the subtended angle increases, which is different from simply supported arches. Besides, the critical load of fixed-end circular arches has the non-trival solution at the subtended angle of 180°. Either positive or negative bending moments, could lead the flexural-torsional buckling load of fixed-end circular arches to increase as the subtended angle increases. Numerical examples are presented and compared with other researcher's results. The equations obtained are verified.
出处 《工程力学》 EI CSCD 北大核心 2008年第4期1-4,20,共5页 Engineering Mechanics
关键词 稳定 弯扭屈曲荷载 理论解 固支圆弧拱 总势能 stability flexural-torsional buckling load theoretical solution fixed-end circular arches total potential energy
  • 相关文献

参考文献7

  • 1Timoshenko S P. Theory of elastic stability [M]. 2nd Edition. New York: McGraw-Hill, 1961.
  • 2Papangelis T P, Trahair N S. Flexural-torsional stability of Arch [J]. Journal of Structural Engineering, ASCE, 1987, 113(4): 889-906.
  • 3Pi Y L, Trahair N S. Prebuckling deformations and flexural-torsional buckling of arches [J]. Journal of Structural Engineering, 1995, 121(9): 1313-1322.
  • 4Kang Y J, Yoo C H. Thin walled curved beams: Ⅱ: Analytical solution for buckling of arches [J]. Journal of Engineering Mechanics, ASCE, 1994, 120(10): 2102-2125.
  • 5Yang Y B, Kou S R. Effect of curvature on stability of curved beams [J]. Journal of Structural Engineering, ASCE, 1987, 113(6): 1185-1202.
  • 6Pi Y L, Bradford M A. Out-of-plane strength design of fixed steel I-section arches [J]. Journal of Structural Engineering. ASCE, 2005, 131 (4): 560-568.
  • 7Pi Y L, Bradford M A. Elastic fiexural-torsional buckling of fixed arches [J]. The Quaterly Journal of Mechanics and Applied Mathematics, 2004, 57(4): 551-569.

同被引文献78

  • 1TIMOSHENKO S P, GERE J M. Theory of Elastic Stability[M]. 2nd ed. New York: McGraw-Hill, 1961.
  • 2YOO C H. Flexural-torsional Stability of Curved Beams [J]. Journal of the Engineering Mechanics Division, 1982,108(6) :1351-1369.
  • 3TRAHAIR N S, PAPANGELIS J P. Flexural-torsion- al Buckling of Monosymmetric Arches[J]. Journal of Structural Engineering, 1987,113 (10) : 2271-2288.
  • 4PI Y L,BRADFORD M A,TRAHAIR N S,et al. A Further Study of Flexural-torsional Buckling of Elas- tic Arehes[J]. International Journal of Structural Sta- bility and Dynamics, 2005,5 (2) : 163-183.
  • 5BRADFORD M A, PI Y L. Flexural-torsional Buck- ling of Fixed Steel Arches Under Uniform Bending [J]. Journal of Constructional Steel Research, 2006, 62(1/2) :20-26.
  • 6PI Y L,BRADFORD M A,TIN-LOI F. Flexural-tor- sional Buckling of Shallow Arches with Open Thin- wailed Section Under Uniform Radial Loads [J]. Thin-walled Structures, 2007,45 (3) : 352-362.
  • 7BRADFORD M A,PI Y L. Elastic Flexural-torsional Instability of Structural Arches Under Hydrostatic Pressure[J]. International Journal of Mechanical Sci- ences,2008,50(2) :143-151.
  • 8PI Y L,BRADFORD M A, Elastic Flexural-torsional Buckling of Fixed Arches[J]. The Quartly Journal of Mechanics and Applied Mathematics, 2004, 57 (4) 551-569.
  • 9PI Y L, BRADFORD M A, TIN LOI F. Nonlinear Analysis and Buckling of Elastically Supported Circu- lar Shallow Arches[J]. International Journal of Solids and Structures, 2007,44 (7/8): 2401-2425.
  • 10窦超.钢拱平面外稳定性能及设计方法研究[D].北京:清华大学,2011.

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部