摘要
定义了从F4+vF4到子环F4和F2+vF2上的两个线性Gray映射和,并证明这两个Gray映射都是保持正交性不变的;进一步定义了环F4+vF4上的Lee-重量和Euclidean-重量,并证明Gray映射φ和ψ是保持Lee距离不变的;最后给出了(F4+vF4)n,(F2+vF2)2n、(F4)2n和(F2)4n相互之间的关系图。
The Gray maps Ф and ψ from F4+vF4 to its subrings F4 and F2+vF2 are defined. The properties of the Gray maps which take self-dual codes over F4+vF4 to self-dual codes over the subrings F4 and F2+vF2 are studied. Lee-weight and Euclidean-weight over ring F4+vF. are introduced. It proved that the Gray maps Ф and ψ are Lee weight preserving maps. The commutative diagram of (F4+vF4)^n, (F2+vF2)^2n, (F4)^2n and (F2)^4n is shown.
出处
《计算机工程与设计》
CSCD
北大核心
2008年第7期1758-1759,1784,共3页
Computer Engineering and Design
基金
国家自然科学基金项目(60673074)
安徽省教育厅自然科学基金项目(KJ2008B245)
巢湖学院科学研究基金项目(XLY-200707)
关键词
有限环
格雷映射
类型Ⅱ码
自对偶码
线性码
fmite rings
Gray maps
type II codes
self-dual codes
linear codes