期刊文献+

环F4+vF4上的Gray映射 被引量:3

Gray maps over ring F_4+F_4
下载PDF
导出
摘要 定义了从F4+vF4到子环F4和F2+vF2上的两个线性Gray映射和,并证明这两个Gray映射都是保持正交性不变的;进一步定义了环F4+vF4上的Lee-重量和Euclidean-重量,并证明Gray映射φ和ψ是保持Lee距离不变的;最后给出了(F4+vF4)n,(F2+vF2)2n、(F4)2n和(F2)4n相互之间的关系图。 The Gray maps Ф and ψ from F4+vF4 to its subrings F4 and F2+vF2 are defined. The properties of the Gray maps which take self-dual codes over F4+vF4 to self-dual codes over the subrings F4 and F2+vF2 are studied. Lee-weight and Euclidean-weight over ring F4+vF. are introduced. It proved that the Gray maps Ф and ψ are Lee weight preserving maps. The commutative diagram of (F4+vF4)^n, (F2+vF2)^2n, (F4)^2n and (F2)^4n is shown.
机构地区 巢湖学院数学系
出处 《计算机工程与设计》 CSCD 北大核心 2008年第7期1758-1759,1784,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60673074) 安徽省教育厅自然科学基金项目(KJ2008B245) 巢湖学院科学研究基金项目(XLY-200707)
关键词 有限环 格雷映射 类型Ⅱ码 自对偶码 线性码 fmite rings Gray maps type II codes self-dual codes linear codes
  • 相关文献

参考文献8

  • 1Gaborit P,Pless V,Sole P,et al.Type Ⅱ codes OVer F4[J].Finite Fields and Applications,2002(8):171-183.
  • 2Betsumiya K Gulliver T A,Harada M,et al.On type Ⅱ codes over F4[J].IEEE Trans Inform Theory,2001(47):2242-2248.
  • 3Steven T Dougherty,Keisuke Shiromoto.Maximum distance codes over rings of order 4[J].IEEE Trans Inform Theory,2001f47):400-404.
  • 4Steven T Dougheny,Philippe Gaborit,Masaaki Harada.et al.Type IV self-dual codes OVer rings[J].IEEE Transactions on Information Theory,1999,45(7):2345-2360.
  • 5San Ling,Sole P.Type Ⅱcodes over F4+uF4[J].Europ J Combinatorics,2001(22):983-997.
  • 6Daugherty S L Gaborit P,Harada M,et al.Type Ⅳ self-dual codes over rings[J].IEEE Trans Inform Theory,1999(453:2345-2360.
  • 7Betsumiya K,San Ling,Fidel R Nemenzo.Type Ⅱ codes over F2(m)+uF2(m)]J].Discrete Mathematics,2004,275:43-65.
  • 8Udaya P.Alexis Bonnecaze.Decoding of cyclic codes over F2+uF2[J].IEEE Trans Inform Theory,1999,45(6):2148-2157.

同被引文献21

  • 1钱建发,朱士信.F_2+uF_2+…+u^kF_2环上的循环码[J].通信学报,2006,27(9):86-88. 被引量:6
  • 2Bonneeaze A,Udaya P. Cyclic codes and self-dual codes over F2q-uF2[J]. IEEE Trans Inform Theory, 1999, 45 (4) 1250--1255.
  • 3Zhu Shixin, Wang Yu, Shi Minjia. Some results on cyclic codes over F2 +vF2 [J]]. IEEE Trans Inform Theory, 2010, 56 (4) : 1680-- 1684.
  • 4Hammons A R, Kumar P V. The Z4-1inearity of Kerdock, Preparata, Goethals, and related codes [J]. IEEE Trans Inform Theory, 1994,40(2) : 301-- 319.
  • 5Aydin N, Ray-Chaudhuri D K. Quasi-cyclic codes over Z4 and some new binary codes[J]. IEEE Trans Inform Theo- ry,2002,48(7) :2065--2069.
  • 6Boucher D,Geiselmann W, Ulmer F. Skew cyclic codes[J]. Applied Algebra in Engineering, Communication and Computing, 2007,18(4) : 379--389.
  • 7Boucher D, Ulmer F. Coding with skew polynomial rings [J]. Journal of Symbolic Computation, 2009, 44 ( 12 ): 1664--1656.
  • 8Ahualruh T,Ghrayeh A, Siap I, et al. On the construction of skew quasi-cyclic codes[J]. IEEE Trans Inform Theory, 2010,56(5):2081--2090.
  • 9Boucher D, Sole P, Ulmer F. Skew constacyclic codes over Galois rings[J]. Advances in Mathematics of Communication, 2008,2 (3) : 273-- 292.
  • 10Hammons A R, Jr Kumar P V, Calderbank A R, Sloane N J A, Sole N J A. The Z4 linearity of Kerdock, Preparata, Gethals and related codes[J]. IEEE Trans Inform Theory, 1994, 40: 301-319.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部