期刊文献+

基于支持向量机的高光谱影像分类研究 被引量:8

Research of hyperspectral image classification based on support vector machine
下载PDF
导出
摘要 高光谱遥感技术,将反映目标辐射属性的光谱信息与反映目标空间几何关系的图像信息有机地结合在一起。高光谱影像丰富的光谱信息使其较全色遥感、多光谱遥感能够更好的进行地面目标的分类识别。本文综合利用支持向量机分类的若干关键技术,包括序列最小优化训练算法、多类支持向量机构造方法、核函数及其参数选择的交叉验证"网格搜索",给出了高光谱影像分类流程,进行了遥感数据试验分析。 Hyperspectral remote sensing technology organically combines the radiation information which relate to the targets' attribute, and the space information which relate to the targets' position and shape. The spectrum information, which the hyperspectral image enriches are better to carry on the ground target classification, compare with panchromatic remote sensing image and multispectral remote sensing image. This paper introduces the key technologies of hyperspectral image classification based on support vector machine, including sequential minimal optimization, kernel function's parameter and regularization constant selection cross-validation via parallel grid search, and multi-classes classification problem. Then the method is applied to the hyperspectral image classification test.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第8期2029-2031,2034,共4页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2006AA701309)
关键词 高光谱影像 支持向量机 序列最小优化 交叉验证 网格搜索 hyperspectral image support vector machine sequential minimal optimization cross-validation grid search
  • 相关文献

参考文献7

  • 1VLADIMIR N.Vapnik.统计学习理论[M].北京:电子工业出版社,2004.
  • 2John Shawe-Taylor, Nello Cristianini:Kemel methods for pattern analysis[M].Cambridge University Press,2004.
  • 3宋晓峰,陈德钊,俞欢军,胡上序.支持向量机中优化算法[J].计算机科学,2003,30(3):12-15. 被引量:14
  • 4Platt J.Sequential minimal optimization:A fast algorithm fortraining support vector machine [R].Microsoft Research, 1998.
  • 5苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 6王丽 范玉妹 吴娟.关于支持向量机核函数中参数选择的研究.内江师范学院学报,2006,21(1):78-81.
  • 7Ham J, Chen Y, Crawford M,et al.lnvestigation of the random forest framework for classification ofhyperspectral data[C].IEEE Trans on Geoscience and Remote Sensing, Accepted for Publication,2005.

二级参考文献16

  • 1Weston J, Watkins C. Support vector machines for multi class pattern recognition[C]//Proceedings ofthe 7^th European Symposium on Artificial Neural Networks. Bruges, Belgium: [s. n.], 1999: 219-224.
  • 2Friedman J H. Another apporoach to polychotomous classification [R]. Stanford University, Department of Statistics, 1996.
  • 3Krebel U. Pairwise classification and support vector machines [M]. Cambridge, USA: The MIT Press, 1999:255-268.
  • 4Weston J, Watkins C. Multi-class support vector machines[R]. CSD-TR 98-04, Royal Holloway, University of London, 1998.
  • 5Rifkin R, Clautau A. In defense of one vs all classification [J]. Journal of Machine Learning Research ,2004, (5) : 101-141.
  • 6Debnath R, Takahide N, Takahashi H. A decision based on one against one method for multi-class support vector machine[J]. Pattern Anal Applic,2004,7: 164-175.
  • 7Moreira M, Mayoraz E. Improving pairwise coupling classification with error correcting classifiers[C]//Proeeeding of Tenth European Conference on Machine Learning. Germany:Springer Berlin/Heidelberg, 1998,1398 : 160-171.
  • 8Cutzu F. How to do multi-way classification with two-way classifiers [C]// ICANN/ICONIP 2003.Germany:Springer Berlin/Heidelberg, 2003:375-382.
  • 9Hsu C W, I.in C J. A comparison of methods for multi-class support vector machines [J]. IEEE Trans on Neural Networks, 2002,13(2):415-425.
  • 10Platt J. Fast training of support vector machines using sequential minimal optimization, advances in kernel methods: support vector learning[M]. Cambridge, USA:The MIT Press, 1999:185-208.

共引文献85

同被引文献168

引证文献8

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部