期刊文献+

Normal Forms for Periodic Orbits of Real Vector Fields

Normal Forms for Periodic Orbits of Real Vector Fields
原文传递
导出
摘要 We consider normal forms of real vector fields near periodic orbits and provide sufficient conditions for their smooth linearization. In addition, the main results also assert the existence of vertical local foliations, whose leaves are all transversal to the periodic orbit. We consider normal forms of real vector fields near periodic orbits and provide sufficient conditions for their smooth linearization. In addition, the main results also assert the existence of vertical local foliations, whose leaves are all transversal to the periodic orbit.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第5期797-808,共12页 数学学报(英文版)
基金 NSF Grant No.10531010 NSF Grant NNSF of China (No.10525104)
关键词 normal form Homotopy method FOLIATION normal form, Homotopy method, foliation
  • 相关文献

参考文献9

  • 1Hale, J.: Integral Manifolds of Perturbed Differential Systems. Ann. of Math., 73(3), 496-531 (1961)
  • 2Li, W., Llibre, J., Zhang, X.: Extension of Floquet's.theory to nonlinear periodic differential systems and embedding diffeomorphisms in differential flows. Amer. J. Math., 124(1), 107-127 (2002)
  • 3Arnold, L.: Random Dynamical Systems, Springer-Verlag, Berlin, 1998
  • 4Il'yashenko, Yu. S., Yakovenko, S. Yu.: Finitely-smooth normal forms of local families of diffeomorphisms and vector fields. Russian Math Sur., 46(1), 1-43 (1991)
  • 5Kirchgraber, U., palmer, K.: Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization, Longman Scientific & Technical, Harlow, 1990
  • 6Borel, E.: Sur Quelques Points de la Theorie des Functions. Ann. Sci. Ec. Norm. Super., Ⅳ. Set., 12, 9-55 (1895)
  • 7Whitney, H.: Analytic Extension of Differentialble Functions Defined in Closed Sets. Trans. Amer. Math. Soc., 36(3), 63-89 (1961)
  • 8Li, W.: Theory of Normal Forms and Applications, 1st ed., Science Press, Beijing, 2000
  • 9Wiggins, S.: Normally hyperbolic invariant manifolds in dynamical systems, Springer-Verlag, New York 1994

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部