期刊文献+

非一致强制的次二次Hamilton系统的周期解(英文)

Periodic Solutions of Not Uniformly Coercive Subquadratic Hamiltonian Systems
下载PDF
导出
摘要 用临界点理论中的极小极大方法得到了非凸、非强制、无界、次二次Hamilton系统周期解的几个存在性定理. Some existence theorems are obtained for periodic solutions of nonconvex, unbounded, subquadratic and not uniformly coercive Hamiltonian systems by the minimax methods in the critical point theory.
作者 陈涛 吴行平
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期20-25,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771173)
关键词 周期解 次二次Hamilton系统 极小极大方法 periodic solution subquadratie Hamiltonian system the minimax method
  • 相关文献

参考文献11

  • 1[1]Benci V,Rabinowitz P H.Critical Point theorems for Indefinite Functions[J].Inven Math,1079,52:241-273.
  • 2[2]Rabinowitz P H.On Subharmonic Solutions of Hamiltonian Systems[J].Comm Pure Appl Math,1980,33(5):609-633.
  • 3[3]Capozzi A.On Suhquadratic Hamiltonian Systems[J].Nonlinear Anal,1984,8(6):553-562.
  • 4[4]Silva E A de B e.Subharmonic Solutions for Subquadratic Hamiltonian Systems[J].J Differential Equations,1995,115(1):120-145.
  • 5范先令,李风泉.“次二次”Hamilton系统周期解[J].兰州大学学报(自然科学版),1996,32(1):6-10. 被引量:4
  • 6[6]Mawhin J,Willem M.Critical Point theory and Hamiltonian Systems[M].New York:Spinger-Verlag,1989.
  • 7[7]Rabinowitz P H.Minimax Methods in Critical Point theory with Applications to Differential Equations[M].CBMS Re-gional Conf Ser in Math,1986:65.
  • 8[8]Tang Chun-Lei.Periodic Solutions for Nonautonomous Second Systems with Sublinear Nonlinearity[J].Proc Amer Math Soc,1998,126(11):3263-3270.
  • 9吴行平,唐春雷.Periodic solutions of non-autonomous second order systems with subconvex potential[J].西南师范大学学报(自然科学版),1995,20(4):348-351. 被引量:4
  • 10唐春雷,吴行平.极小作用原理在二阶Hamilton系统中的应用[J].西南师范大学学报(自然科学版),2000,25(4):364-368. 被引量:6

二级参考文献22

  • 1[1]Jiang Q,Tang C L.Periodic and Subharmonic Solutions of a Class of Subquadratic Second-Order Hamiltonian Systems[J].J Math Anal Appl,2007,328:380 -389.
  • 2[2]Long Y M.Nonlinear Oscillations for Classical Hamiltonian Systems with Bi-Even Subquadratic Potentials[J].Nonlinear Anal,1995,24:1665 -1671.
  • 3[3]Mawhin J,Willem M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.
  • 4[4]Rabinowitz P H.On Subharmonic Solutions of Hamiltonian Systems[J].Comm Pure Appl Math,1980,33:609-633.
  • 5[5]Rabinowitz P H.On a Class of Functionals Invariant Under a Zn Action[J].Trans Amer Math Soc,1988,310:303-311.
  • 6[6]Tang C L.Periodic Solutions for Nonautonomous Second Systems with Sublinear Nonlinearity[J].Proc Amer Math Soc,1998,126:3263-3270.
  • 7[7]Tang C L,Wu X P.Notes on Periodic Solutions of Subquadratic Second Order Systems[J].J Math Anal Appl,2003,285:8-16.
  • 8张恭庆,临界点理论及其应用,1986年
  • 9陈文--,非线性泛函分析,1982年
  • 10Wu Xingping,J Math Anal Appl,1999年,2 3 0卷,1期,135页

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部