期刊文献+

一类超二次二阶哈密顿系统非平凡周期解的存在性(英文) 被引量:1

Existence of Nontrivial Periodic Solutions for a Class of Superquadratic Second-Order Hamiltonian Systems
下载PDF
导出
摘要 运用临界点理论中的极小极大方法证明了一类超二次非自治二阶哈密顿系统非平凡周期解的存在性,并得到了一些新的可解性条件. The existence of nontrivial periodic solutions is proved for a class of superquadratic nonautonomous second-order Hamiltonian systems by the minimax method in critical point theory, and some new solvability conditions are obtained.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期26-31,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771173)
关键词 周期解 二阶哈密顿系统 超二次条件 (C)^*条件 局部环绕 periodic solution second-order Hamiltonian system superquadratic condition (C)^* condition local linking
  • 相关文献

参考文献13

  • 1[1]Rabinowitz P H.Periodic Solutions of Hamiltonian Systems[J].Comm Pure Appl Math,1978,31(2):157-184,
  • 2[2]Li Shujie,Willem Michel.Applications of Local Linking to Critical Point Theory[J].Journal of Mathematical Analysis And Applications,1995,189:6-32.
  • 3[3]Long Yiming.Multiple Solutions of Perturbed Superquadratic Second Order Hamiltonian Systems[J].Trans Amer Math Soc,1989,311(2):749-780.
  • 4[4]Fei Guihua.On periodic Solutions of Superquadratic Hamiltonian Systems[J].Electron J Differential Equations,2002,8:1-12.
  • 5[5]Tao Zhulian,Tang Chunlei.Periodic and Subharmonic Solutions of Second-Order Hamihonian Systems[J].J Math Anal Appl,2004,293(2):435-445.
  • 6[6]Tao Zhulian,Yan Shang'an,Wu Songlin.Periodic Solutions for a Class of Superquadratic Hamiltonian Systems[J].J Math Anal Appl,2007,331(1):152-158.
  • 7陶竹莲,唐春雷.非二次二阶Hamilton系统的周期解[J].西南师范大学学报(自然科学版),2002,27(6):841-846. 被引量:8
  • 8[8]Schechter M.Periodic Non-Autonomous Second-Order Dynamical Systems[J].J Differential Equations,2006,223:290-302.
  • 9[9]Mawhin J,Willem M.Critical Point Theory and Hamihonian Systems[M].New York:Springer,1989.
  • 10[10]Rabinowitz P H.Minimax Methods in Critical Point Theory with Applications to Differential Equations[M].Provi-dence:Amer Math SOc,1986.

二级参考文献19

  • 1[1]Jiang Q,Tang C L.Periodic and Subharmonic Solutions of a Class of Subquadratic Second-Order Hamiltonian Systems[J].J Math Anal Appl,2007,328:380 -389.
  • 2[2]Long Y M.Nonlinear Oscillations for Classical Hamiltonian Systems with Bi-Even Subquadratic Potentials[J].Nonlinear Anal,1995,24:1665 -1671.
  • 3[3]Mawhin J,Willem M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.
  • 4[4]Rabinowitz P H.On Subharmonic Solutions of Hamiltonian Systems[J].Comm Pure Appl Math,1980,33:609-633.
  • 5[5]Rabinowitz P H.On a Class of Functionals Invariant Under a Zn Action[J].Trans Amer Math Soc,1988,310:303-311.
  • 6[6]Tang C L.Periodic Solutions for Nonautonomous Second Systems with Sublinear Nonlinearity[J].Proc Amer Math Soc,1998,126:3263-3270.
  • 7[7]Tang C L,Wu X P.Notes on Periodic Solutions of Subquadratic Second Order Systems[J].J Math Anal Appl,2003,285:8-16.
  • 8Rabinowitz P H. Periodic Solutions of Hamiltonian Systems [J]. Comm Pure Appl Math, 1978, 31: 157 - 184.
  • 9Fei Guihua. On Periodic Solutions of Superquadratic Hamiltonian Systems [J], Elec J Diff Eq, 2000, 08:1 - 12.
  • 10Li Shujie, Michel Willem. Applications of Local Linking to Critical Point Theory [J]. J Diff Eq, 1995, 189:6 - 32.

共引文献13

同被引文献3

  • 1MAWHIN J,WILLEM M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.
  • 2RABINOWITZ P H.Periodic Solutions of Hamiltonian Systems[J].Comm Pure Appl Math,1978,31(2):157-184.
  • 3ZHANG Lie-hui,WANG Yong.A Note on Existence of a Unique Periodic Solution of Non-autonomous Second-orderHamiltonian Systems[J].Journal of The Franklin Institute,2010,347:781-794.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部