摘要
建立了Banach空间常微分方程初值问题在弱拓扑下解的一个逼近定理:设fn(t,x)与f(t,x)在R0=[t0,t0+a]×B(x0,b)上是弱弱连续的(n=1,2,…),且{fn(t,x)}在R0上弱一致收敛于f(t,x),又设0<α≤a,xn(t):[t0,t0+α]B(x0,b)弱可微且满足方程:x′n(t)=fn(t,xn(t))xn(t0)=zn n=1,2,…这里x′n(t)表示xn(t)的弱导数,{zn}弱收敛到x0.如果{xn(t)}在[t0,t0+α]上弱一致收敛于x(t),则x(t)是初值问题x′(t)=f(t,x(t))x(t0)=x0的弱解.
In this paper, we establish an approximation theorem of weak solution of an ordinary differential equation in Banach space as follows Theorem Let E be weakly sequentially complete Banach space,fn(t,x)(n=1,2…) and f(t,x) be weakly weakly continuous on R0=[t0,t0+a]×B(x0,b),{fn(t,x)} be converge weakly uniformly to f(t,x) on R0,0〈a≤a,xn(t):[t0,t0+a]→B(x0,b) be weakly differentiable and {xn(t0)=zn^x'n(t)=fn(t,x(t)) n=1,2… where x'n(t) is weakly derivative of xn(t) and {zn} is converge weakly to x0.IF {xn(t)} is converge weakly uniformly to x(t) on [t0,t0+a],then x(t)is the weakly solution of Cauchy problem {x(t0)=x0^x'(t)=f(t,x(t))
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期49-52,共4页
Journal of Southwest University(Natural Science Edition)
基金
西南师范大学科技基金资助项目(20700505)
关键词
弱拓扑
弱弱连续函数
弱解
weak topology
weakly weakly continuous function
weak solution