期刊文献+

Delta算子系统基于输出反馈的鲁棒协方差控制 被引量:2

Robust covariance output feedback controllers design for Delta operator systems
下载PDF
导出
摘要 研究Delta算子描述的线性不确定系统基于输出反馈的鲁棒协方差控制问题,即设计输出反馈控制器,使Delta算子不确定系统鲁棒稳定,且稳态输出协方差矩阵具有给定上界。利用线性矩阵不等式(LMI)方法,给出Delta算子不确定系统输出反馈鲁棒协方差控制器存在的充分条件,并在此基础上,提出Delta算子不确定系统输出反馈鲁棒协方差控制器设计算法。数值算例表明设计方法的可行性。 The problem of robust covariance control for the delta operator formulated linear uncertain systems based on output feedback is studied. The aim is to design an output feedback controller such that the delta operator uncertain system is robustly stable, and the output covariance matrix is less then a given positive definite matrix. Based on linear matrix inequality (LMI) approach, an existence condition of the robust covariance output feedback controller for the delta operator uncertain system is given, and then the design procedure of the controller is suggested. A numerical example is provided to illustrate the design method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第4期700-704,共5页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60673014)
关键词 协方差控制 输出反馈 线性矩阵不等式(LMI) DELTA算子系统 鲁棒稳定 eovariance control output feedback linear matrix inequality (LMI) delta operator system robust stability
  • 相关文献

参考文献8

  • 1Middeton R H, Goodwin G C. Improved finite word length characteristics in digital control using delta operator[J]. IEEE Trans. on Autom. Contr., 1986, 31(11):1015-1021.
  • 2Neuman C P. Properties of the delta operator model of dynamic physical systema[J]. IEEE Trans. on Systems, Man and Cybernet , 1993, 23 (1): 296-301.
  • 3Suchomsli P. Numerically robust delta-domain ,solutions to discrete-time Lyapunov equations[J]. Systems and Control letters, 2002, 47(4): 319 - 326.
  • 4李惠光,武波,李国有,等.Delta算子控制及其鲁棒控制理论基础[M].北京:国防工业出版社,2005.
  • 5张端金,吴捷.具有区域极点和方差约束的Delta算子系统鲁棒H_∞滤波[J].控制与决策,2004,19(1):12-16. 被引量:18
  • 6刘满,井元伟,张嗣瀛.Delta算子系统D稳定鲁棒容错控制[J].东北大学学报(自然科学版),2004,25(8):715-718. 被引量:17
  • 7Gahinet P, Apkarian P. A linear matrix inequality approach to control[J], International Journal Robust and Nonlinear Control, 1994, 4: 421-448.
  • 8Wang Z, Burnham K J. LMI approach to output feedback control for linear uncertain systems with D-stability constraints[J]. Journal of Optimization Theory and Applications, 2002, 113(2) : 357 - 372.

二级参考文献11

  • 1WangZ HuangB.Robust H2/H∞ filtering for linear systems with error variance constraints[J].IEEE Trans on Signal Processing,2000,48(8):2463-2467.
  • 2Middleton R H, Goodwin G C. Improved finite word length characteristics in digital control using delta operator[J]. IEEE Trans on Autom Contr, 1986,31(11):1015-1021.
  • 3Goodwin G C, Leal R L, Middleton R H. Rapprochement between continuous and discrete model reference adaptive control[J]. Automatica, 1986,22(2):199-207.
  • 4Goodwin G C, Middleton R H, Poor H V. High-speed digital signal processing and control[J]. Proc IEEE, 1992,80(2):240-259.
  • 5Molchanov A P, Bauer P H. Robust stability of linear time-varying delta-operator formulated discrete-time systems[J]. IEEE Trans Autom Contr, 1999,44(2):325-327.
  • 6Shor M H, Perkins W R. Reliable control in the presence of sensor/actuator failures: a unified discrete/continuous approach[A]. Proc 30th IEEE Conf Deci Contr[C]. Brighton, 1991.1601-1606.
  • 7Shor M H, Perkins W R, Medanic J V. Design of reliable decentralized controllers: a unified continuous /discrete formulation[J]. Int J Control, 1992,56(4):943-965.
  • 8Garcia G, Bernussou J. Pole assignment for uncertain systems in a specified disk by state feedback[J]. IEEE Trans on Autom Contr, 1995,AC-40(1):184-190.
  • 9张端金,吴捷,杨成梧.Delta算子系统圆形区域极点配置的鲁棒性[J].控制与决策,2001,16(3):337-340. 被引量:27
  • 10张严心,张嗣瀛.不确定对称组合系统的鲁棒容错反馈设计新方法[J].东北大学学报(自然科学版),2001,22(3):237-240. 被引量:1

共引文献48

同被引文献35

  • 1纪志成,赵维一,谢林柏.δ算子下的网络控制系统最优控制方法[J].控制与决策,2006,21(12):1349-1353. 被引量:2
  • 2赵贤林,沈明霞.基于Delta算子系统TS模型的鲁棒稳定性研究[J].控制工程,2007,14(1):60-61. 被引量:2
  • 3杨德东,张化光.连续时间T-S模糊系统的离散化:Delta算子方法[J].东北大学学报(自然科学版),2007,28(8):1065-1068. 被引量:3
  • 4Fang L, Kai-Yew L, Jian L W, et al. Constrained nonlinear finitetime control allocation [ C] // Proc. of the American Control Confernce, 2007 : 3801 - 3806.
  • 5Harkegard O. Dynamic control allocation using constrained quadratic programming[J]. Journal of Guidance, Control, and Dynamics, 2004,27(6) : 1028 - 1034.
  • 6LuoY, Serrani A, Yurkovich S, et al. Modelpredictive dynamic control allocation scheme for reentry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007,30(1 ) : 100 - 1.13.
  • 7Oppenheimer M, Doman D. A method for compensation of interactions between second-order actuators and control allocators[C]//Proc, of the IEEE Aerospace Conference, 2005 : 1 - 8.
  • 8Doman D B, Ngo A D. Dynamic inversion-based adaptive/recon- figurable control of the X - 33 on ascent[J].Journal o/Guidance, Control, and Dynamics, 2002,25(2) :275 -284.
  • 9Harkegard O, Glad S T. Resolving actuator redundancy-optimal control vs. control allocation[J]. Automatica, 2005,11 : 137 - 144.
  • 10Kishore W C, Sen S, Ray G. Disturbance rejection and control allocation of over-actuated systems[C] //Proc. of IEEE International Conference on Industrial Technology , 2006 : 1054 - 1059.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部