摘要
研究了一类非仿射的纯反馈单输入单输出非线性系统。针对此系统,在中值定理、神经网络参数化和解耦Backstepping的基础上,提出了一种自适应变结构神经网络控制策略,而且所给出的定理证明闭环系统的所有信号在平衡点上是半全局一致有界的。通过对一个非仿射CSTR对象的仿真验证了该方法的有效性。
A class of nonlinear non-affine pure-feedback SISO systems with unknown nonlinear functions are investigated. An adaptive variable structure control is presented for this class of systems based on the combination of mean value theorem, neural network parameterization, and decoupled backstepping design. All the signals in the closed-loop system can be shown to be semi-globally uniformly ultimate boundedness around the equilibrium point. The effectiveness of the proposed control law is verified via simulation for a non-affine CSTR plant.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2008年第4期723-726,共4页
Systems Engineering and Electronics
基金
国家自然科学基金资助课题(60704013)
关键词
非线性
自适应变结构控制
神经网络参数化
纯反馈系统
nonlinear
adaptive variable structure control
neural network parameterization
pure-feedback systems