期刊文献+

含位置参数的广义Weibull分布及其置信限估计 被引量:1

Estimation of confidence limits for generalized Weibull distribution including location parameter
下载PDF
导出
摘要 通过引入位置参数,建立了能够同时描述浴盆曲线失效率和最大安全寿命的广义Weibull分布模型族,进而采用秩分布理论给出确定该寿命分布族置信限估计的参数化方法。具体分析了目前广泛应用的一种广义Weibull分布,导出该模型参数的置信区间估计与分布函数的置信上、下限曲线函数关系式。文中还进行了模拟验证与实例对比分析。 The generalized weibull distribution (GWD) families contained location parameter are proposed, which can analyze the life data with both the bath-curve failure rate and maximum safety life better than the traditional GWD. The parameterized method of confidence limits is established based on the theory of rank distribution. For a widely used GWD, one-sided confidence and two-sided confidence interval of both parameters and distribution curves are discussed in detail. In addition, examples of both simulation and comparison are given at last.
作者 马小兵 赵宇
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第4期777-779,共3页 Systems Engineering and Electronics
基金 国家部委重点基金资助课题(9140A19030106HK0108)
关键词 可靠性 浴盆曲线 秩分布 置信限 reliability bathtub curve rank distribution confidence limit
  • 相关文献

参考文献9

  • 1Xie M, Tang Y, Goh T N. A modified Weibull extension with bathtub-shaped failure rate funetion[J]. Reliability Engineering & System Safety,2002, 76:279 - 285.
  • 2Gurvich M R, Dibenedetto A T, Rande S V, A new statistical distribution for characterizing the random strength of brittle materials[J].Journal of Materials Science, 1997, 32:2559 - 2564.
  • 3Wu J W, Lu H L, Chen C. H, et al. Statistical inferenee about the shape parameter of the new two-parameter bathtub-shaped lifetime distribution[J]. Quality and Reliability Engineering International, 2004, 20:607 - 616.
  • 4Chen Z. A new two-parameter lifetime distribution with bathtub .shape or inereasing failure rate funetion[J]. Statistics and Probability Letters, 2002, 49: 155-161.
  • 5Lai C D, Xie M, Murthy D N P. Modified Weibull model[J]. IEEE Trans. on Reliability, 2003, 52(1) : 33 - 37.
  • 6Saralees Nadarajah, Samuel Kotz, On some recent modifications of Weibull distribution[J]. IEEE Trans. on Reliability, 2005, 54(4):561-562.
  • 7Kapur K C, Lamberson L R. Reliability in engineering design [M]. John Wiley & Sons, 1977.
  • 8徐人平,傅惠民,高镇同,李社进.置信限曲线等同性原理及其应用[J].科技通报,1996,12(1):10-15. 被引量:1
  • 9傅惠民,张应福,张少波.解非线性方程组的一元化方法[J].机械强度,1999,21(3):205-207. 被引量:35

二级参考文献4

共引文献34

同被引文献14

  • 1李进,黄敏,赵宇.威布尔分布的极大似然估计的精度分析[J].北京航空航天大学学报,2006,32(8):930-932. 被引量:17
  • 2费鹤良,韩柏昌,陈迪.Weibull分布形状参数的收缩估计[J].应用概率统计,1997,13(1):27-36. 被引量:5
  • 3Xie M, Tang Y, Goh T N. A modified weibull extension with bathtub-shaped failure rate function[ J ]. Reliability Engineering & System Safety, 2002, 76:279-285.
  • 4Gurvieh M R, Dibenedetto A T, Rande S V. A new statistical distribution for characterizing the random strength of brittle materials[ J]. Journal of Materials Science, 1997,32 : 2559 - 2564.
  • 5Wu J W, Lu H L, Chen C H, et al. Statistical inference about the shape parameter of the new two-parameter bathtub-shaped lifetime distribution [J]. Quality and Reliability Engineering International, 2004, 20:607 - 616.
  • 6Nadarajah S, Kotz S. On some recent modifications of Weibull distribution[J]. IEEE Transaction on Reliability, 2005, 54(4):561 - 562.
  • 7Singh H P, Saxena S, Joshi H. A family of shrinkage estimators for weibull shape parameter in censored sampling[J]. Statistical Papers, 2008, 49(1) :513 - 529.
  • 8Johnson N L, Kotz S, Balakrishnan N. Continuous Univariate Distributions[M]. Wiley, Singapore, 2004,1.
  • 9Kaminskiy M P, Krivtsov V V. A simple procedure for Bayesian estimation of the Weibull distribution[ J]. IEEE Transaction on Reliability, 2005, 54(4): 612-616.
  • 10Dey D K, Kuo L. A new empirical Bayes estimator with Type-Ⅱ censored data. Computational Statistics & Data Analysis, 1991, 12:271 - 279.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部