期刊文献+

基于微阵列基因表达谱的一种关联空间的癌症分类算法 被引量:3

A Relative Space Based Cancer Classification with Gene Expression Profiles
下载PDF
导出
摘要 利用微阵列基因表达谱分类癌症患者样本对患者的治疗具有非常重要的意义.针对高维、高冗余的微阵列基因数据中致癌因子存在局部相关性的特点,提出一种基于权重的关联空间分类模型(Weight based Classification with Related Space,WCRS).基本思想是首先利用协方差矩阵的对角化来构建癌症组的关联空间,并提出一种基于癌症关联空间的基因表达模式,然后提取使得癌症组具有最小组能量的最小扩展空间,最后在最小扩展空间上建立一种基于权重的癌症分类算法.实验结果表明,WCRS在精确度上比传统分类算法具有更好的性能. Classification of patient samples with gene expression profiles is important to cancer treatment. In the large redundant and high dimensional gene expression data, a cancer is sensitive to some cancerogehic factors while another cancer is sensitive to some others. So we proposed a weight based classification with relative space(WCRS). The main idea is that a cancer's relative space is obtained via the diagonalization of its covariance matrix, and we built the cancer's model based on its relative space. Then the energy of a cancer is presented for treasuring its relative spaces, and a minimal spread space based classification algorithm is proposed. The experiments show WCRS makes better precision than traditional classifications.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第4期614-619,共6页 Acta Electronica Sinica
基金 湖南省自然科学基金(No.07JJ5085)
关键词 癌症分类 基因表达谱 关联空间 cancer classification gene expression profile relative space
  • 相关文献

参考文献13

  • 1M Kuramochi,G Karypis.Gene classification using expression profiles:a feasibility study[J].International Journal on Artificial Intelligence Tools,2005,14(4):641-660.
  • 2李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 3M A Shipp,K N Ross,P Tamayo,et al.Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning[J].Nature Medicine,2002,8 (1):68-74.
  • 4T R Golub,D K Slonim,P Tamayo,C Huard,et al.Molecular classification of cancer:class discovery and class prediction by gone expression monitoring[J].Science,1999,286(5439):531-537.
  • 5L J V T Veer,H Dai,M l V D Vijver,Y D He,et al.Gene expression profiling predicts clinical outcome of breast cancer[J].Nature,2002,415(6871):530-536.
  • 6S B Cho,H H Won.Machine learning in DNA Micrarray analysis for cancer classification[A].First Asia-Pacific Bioinformatics Conference (APBC 2003)[C].Adelaide,Australia:Australian Computer Society,2003.189-198.
  • 7XG Lu,Y P Lin,X L Yang,et al.Using most similarity tree based clustering to select the top most discriminating genes for cancer detection[A].8th International Conference of Artificial Inellgence and Soft Computing(ICAISC 2OO6)[C].Berlin,German:Springer-Verlag,2006.931-940.
  • 8X Hu,I Yoo.Ouster ensemble and its application in gene expression analysis[A].2nd Asia-Pacific Bioinformatics Conference(APBC2004)[C].Adelaide,Australia:Australian Computer Society,2004.297-302.
  • 9L Conde,A Mateos,J Herrero,et al.Unsupervised reduction of the dimensionality followed by supervised learning with a perceptron improves the classification of conditions in DNA Microarray gene expression data[A].Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing[C].2004,77-86.
  • 10J Khan,J S Wei,M Ringne,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001,7(6):673 -679.

二级参考文献28

  • 1Theodoridis S,Koutroumbas K.Pattern Recognition(2nd Edition)[M].New York:Academic Press,2003.177-179.
  • 2Vapnik V N.Statistical Learning Theroy[M].New York:Wiley Interscience,1998.
  • 3Padil P,Novoviová J,Kittler J.Floating search method in feature selection[J].Pattern Recognition Letters,1994,15(11):1119-1125.
  • 4Jain A,Zongker D.Feature selection:evaluation,application and small sample performance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(2):153-158.
  • 5DeRisi J,Penland L,Brown P O,et al.Use of a cDNA microarray to analyse gene expression patterns in human cancer[J].Nature Genetics,1996,14(4):457-460.
  • 6Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 7Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001,7(6):673-679.
  • 8Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2000,46(13):389-422.
  • 9Broad Institute.Cancer Program Data Sets[DB/OL].http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi,1999-10-15/2003-06-09.
  • 10Ramaswamy S,Golub T R.DNA microarrays in clinical oncology[J].Journal of Clinical Oncology,2002,20(7):1932-1941.

共引文献42

同被引文献43

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部