摘要
目的对域F上典型群G(Fn,β)的生成问题、所得成果作了回顾,对局部环上伪辛群生成问题的研究作了一个展示.方法按展示的范式将G(Rn,β)映到G(Fn,β)上进行处理.结果在伪辛几何中,任一运动都可通过有限次平移来实现.结论给出了伪辛群的生成定理:伪辛群GPSn(R,β)存在有限生成系g={σ,λv|λ∈R,v∈Rn且β(v,v)=0}.
Objective To make the review on the obtained results of generation of the classical group G (F^n, β) over the field F, and to made a display on the study of the classical generation of the pseudosymplectic group over local rings. Method Dealing with this problem by mapping G (R^n, β) onto G (F^n, ^-β). Resutlt In pseudo-symplectic geometry, any action can be achieved by finite trans lations. Conclusion The generation of pseudo-symplectic group theorem is given: The pseudo-symplectic group GPS. (R, β) exists finite generating system: g={σ,λv|λ∈R,v∈Rn且β(v,v)=0}.
出处
《河北北方学院学报(自然科学版)》
2008年第2期1-4,共4页
Journal of Hebei North University:Natural Science Edition
基金
海南省教育厅高校科研项目(HJ200781)
琼州大学重点扶持基础数学学科(200527)
关键词
典型群
伪辛空间
伪辛群
classical group
pseudo-symplectic space
pseudo-symplectic group