期刊文献+

差分方程在计算n阶行列式中的应用 被引量:1

Application of Differential Equation in Calculation of N-order Determinant
下载PDF
导出
摘要 目的旨在利用差分方程寻找求行列式值的新方法.方法依照差分方程的不同类型,应用分析对比研究的方法.结果探讨了利用差分方程解决了实际应用问题—计算n阶行列式,特别是那些可以用递推法计算的行列式,往往可以利用一阶、二阶常系数差分方程,能够比较方便的求出它的值.较全面、系统地讨论了这一新的方法,总结出多种适用类型,并一一给出了具体求解过程.结论运用差分方程计算行列式值的新方法是简便而有效的. Objective This paper aims at finding a new approach to determine the value of determinant by using differential equation. Approach By using a comparative method in accordance with the different types of differential equations. Results The authors discuss how to use different equations to solving concrete problems and conclude that for some n-order determinants, especially those that can be calculated by recursion. It is easier to apply one or two order differential equations with constant coefficients to deter- mine their value. The paper discusses this method in a comprehensive and systematic way, sums up applicable types and gives concrete solutions in each case. ConcLusion It is convenient and efficient to calculate the value of determinat by using differential equations.
出处 《河北北方学院学报(自然科学版)》 2008年第2期10-12,共3页 Journal of Hebei North University:Natural Science Edition
关键词 行列式 差分方程 特征方程 determinant differential equation characteristic equation
  • 相关文献

参考文献7

  • 1[1]同济大学.线性代数(第五版)[M].北京:高等教育出版社,2007.9-21
  • 2[2]R.Creighton Buck[M].New York;McGraw-Hill Book Co,1978.464
  • 3[4]赵树嬷.微积分[M].北京:中国人民大学出版社,2002.391-404
  • 4[5]George B.Caculus[M].Menlo Park,California:Addison-Wesley Publishing Co,1968.694-696
  • 5[7]Bass J.Exercises in Mathematics[M].New York:Academic Press,1966.323-327
  • 6杨桂元.用差分方程计算行列式[J].高等数学研究,2007,10(1):86-87. 被引量:3
  • 7[10]James C.Mathematic Dictionary[M].New York:Van Nostrand Reinhold Co,1976.274

二级参考文献1

  • 1杨桂元.线性代数[M].北京:电子科技出版社,2002:220.

共引文献2

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部