期刊文献+

态射的分解与Moore-Penrose逆

Factorization of Morphisms and Moore-Penrose Inverse
下载PDF
导出
摘要 通过态射的分解讨论预加法范畴中态射的Moore-Penrose逆。给出了态射的Moore-Penrose逆存在的几个充要条件以及表达式。特别,得到了态射f有Moore-Penrose逆的充要条件是f有泛分解f=pgq使得g+存在并且(pg)*pg+i-g+g和gq(gq)*+i-gg+均可逆。 By use of factorization of morphisms, the Moore-Penrose inverses of morphisms in the preadditive category are discussed. Some necessary and sufficient conditions for existence of the Moore-Penrose inverse of morphisms and some characterizations of the Moore-Penrose inverse are given. In particular, the Moore-Penrose inverse of a morphism f exists if and only if there exist morphisms p,g and q such that f=pgq,g^+ exists, and (pg)^* pg+i-g^+g and gq(gq)^* +i-gg^+ are both invertible.
作者 章劲鸥
机构地区 宁波大学数学系
出处 《科技通报》 2008年第3期299-304,共6页 Bulletin of Science and Technology
关键词 态射 泛分解 MOORE-PENROSE逆 morphism, universal factorization Moore-Penrose inverse.
  • 相关文献

参考文献12

  • 1Davis D L, Robinson D W. Generalized inverses of morphisms[J]. Linear Algebra Appl,1972, 5: 319-328.
  • 2Puystjens R, Robinson D W. The Moore-Penrose inverse of a morphism with factorization[J]. Linear Algebra Appl, 1981, 40: 129-141.
  • 3Robinson D W, Puystjens R. Generalized inverses of morphisms with kernels[J]. Linear Algebra Appl, 1987, 96: 65- 86.
  • 4Miao Jianming, Robinson D W. Group and Moore-Penrose inverse of regular morphisms with kernel and cokernel[J]. Linear Algebra Appl, 1988, 110: 263-270.
  • 5Puystjens R, Robinson D W. Symmetric morphisms and the existence of Moore-Penrose inverses[J]. Linear Algebra Appl, 1990, 131: 51-69.
  • 6江声远,刘晓冀.具有泛分解的态射的广义逆[J].数学学报(中文版),1999,42(2):233-240. 被引量:24
  • 7曹永知,朱萍.关于具有泛分解的态射的广义逆[J].数学学报(中文版),2001,44(3):559-566. 被引量:14
  • 8陈军,陈建龙.具有广义分解的态射的广义逆[J].数学学报(中文版),2001,44(5):909-916. 被引量:10
  • 9Pedro Patricio, Roland Puystjens. Generalized invertibility in two semigroups of a ring[J]. Linear Algebra Appl, 2004, 377: 125-139.
  • 10Huylebrouck D, Puystjens R, Van Geel J. The Moore-Penrose inverse of a matrix over a semi-simple artinian ring with respect to an involution[J]. Linear and Multilinear Algebra, 1988, 23: 269-276.

二级参考文献18

  • 1陈建龙.关于环上矩阵的群逆与Drazin逆[J].数学学报(中文版),1994,37(3):373-380. 被引量:8
  • 2江声远.态射的Drazin逆[J].数学学报(中文版),1996,39(6):810-813. 被引量:12
  • 3谢邦杰,抽象代数学,1982年
  • 4Jiang Shengyuan,数学学报,1999年,42卷,2期,233--240页
  • 5Chen Jianlong,Northeast Math J,1996年,12卷,4期,431--440页
  • 6Chen Jianlong,数学学报,1994年,37卷,3期,375--380页
  • 7Li Taosheng,数学学报,1993年,36卷,1期,60--67页
  • 8Zhuang Wajin,新疆大学学报,1992年,9卷,1期,38页
  • 9Chen Jianlong,数学学报,1991年,34卷,5期,621--630页
  • 10Zhuang Wajin,数学学报,1988年,31卷,1期,39页

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部