期刊文献+

改进的最大频繁项目序列集挖掘算法

Improvement of ISS-DM Algorithm based on Mining of Maximal Frequent Item Sequence Sets
下载PDF
导出
摘要 影响关联规则挖掘的关键问题是最大频繁项目序列集的生成问题,而传统的算法往往要求对事务数据库进行多次扫描,从而提高了I/O代价.阐述了项目序列集和它的基本操作的定义,然后详细描述了ISS-DM的最大频繁项目序列集生成算法,并在此基础上提出了一种改进的ISS-DM算法,最后进行了相应的验证.实践证明,改进后的算法同原算法相比,对相同的数据量进行挖掘,算法执行时间明显减少,效率较高. Impact of mining association rules is the key to the production problems of maximal frequent item sequence sets, and the traditional algorithms often require a number of scanning database services, thereby improving of I/O costs. This paper described the item sequence sets and the operation of its basic definition, and detailed the ISS-DM algorithm based on mining of maximal frequent item sequence sets: An improved algorithm is proposed for ISS-DM, and the corresponding certification with the same amount of data processing of original algorithm, the improved algorithm has significantly reduced of algorithm implementation time.
作者 李瑞 马春艳
出处 《大连交通大学学报》 CAS 2008年第2期54-57,共4页 Journal of Dalian Jiaotong University
关键词 关联规则 最大频繁项目序列集 ISS-DM算法 association rules maximal frequent item sequence sets ISS-DM algorithm
  • 相关文献

参考文献9

二级参考文献24

  • 1Han J,Proc of the 21st International Confer-ence on Very L arge Databases,1995年,420页
  • 2Koperski K,Proceedings of the 4thInternational Symp.on L arge Spatial Databases(SSD’95 ),1995年,47页
  • 3Han J,Proceedings of the2 1st InternationalConference on Very L arge Data Bases,1995年,420页
  • 4Li Deyi,Research Development Computers,1995年,42卷,8期,32页
  • 5Han J,IEEE Transactions onKnowledge and Data Engineering,1993年,5卷,29页
  • 6Park J S,Proceedings of the1995ACM- SIGMOD International Conference on Managem ent of Dat,1995年,175页
  • 7Li Deyi,Computers Math Appl,1998年,35卷,3期,99页
  • 8Di Kaichang,Proceedings Int Archives Photogrammetry Remote Sensing,1998年,32卷,3/1期,544页
  • 9Chen M S,IEEE Transactions on Knowledge andData Engineering,1997年
  • 10Kamber M,Pro-ceedings of the 3rd International Conference on Knowledge Discovery and Data,1997年

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部