期刊文献+

大偏差定理与初值敏感性(英文)

The Large Deviations Theorem and Sensitive Dependence on Initial Conditions
下载PDF
导出
摘要 本文讨论了动力系统的统计性质和动力性质的某些关系.对于紧致度量空间X上的连续自映射f,我们证明了:如果f满足大偏差定理,那么f是初值敏感的当且仅当f不是极小等度连续的. In this paper, some relations between stochastic and topological properties of dynamical systems are studied. For a continuous map f from a compact metric space X to itself, we show that if f satisfies the large deviations theorem,then f is sensitive dependence on initial conditions if and only if f is not minimally equicontinuous.
作者 牛应轩
机构地区 皖西学院数理系
出处 《应用数学》 CSCD 北大核心 2008年第2期245-250,共6页 Mathematica Applicata
基金 the Natural Science Foundation of the Committee of Education of AnhuiProvince (KJ2007B123)
关键词 大偏差定理 初值敏感性 拓扑传递 极小的 等度连续的 The large deviations theorem Sensitive dependence on initial conditions Topologically transitive Minimal Equicontinuous
  • 相关文献

参考文献15

  • 1Devaney R L. An Introduction to Chaotic Dynamical Systems[M]. Redwood City: Addiso-Wesley, 1989.
  • 2Banks J,Brooks J,Cairs G,Stacey P. On the Devaney's definitions of chaos[J]. Amer. Math. Monthly, 1992,99:332-334.
  • 3RuelleTakens D. On the natural of turbulence[J]. Comm. Math. Phys. , 1971,20:167-192.
  • 4Liverani C. Decay of correlations[J]. Ann. Math. , 1995,142(2) : 239-301.
  • 5Liverani C. Decay of correlations for piecewise expanding maps[J]. J. Stat. Phys., 1995,787 1111-1129.
  • 6Viana M. Stochastic Dynamics of Deterministic Systems[M]. Rio de J aneiro, Brazil: Instituto de Mathematica Pura e Applicada, 1998.
  • 7Young L S. Stochastic stability of hyperbolic attractors[J]. Ergod. Thro. Dyn. Syst. , 1986,6:311-319.
  • 8Xu Z J, Lin W, Ruan J. Decay of correlations implies chaos in the sense of Devaney[J]. Chaos,Solitons and Fractals, 2004,22 : 305 - 310.
  • 9Wu C, Xu Z J,Lin W. Ruan J. Stochastic properties in Devancy's c haos[J]. Chaos. Solitons and Fractals, 2005,23:1195-1203.
  • 10Yang Runsheng,Shen Sulin. Pseudo-orbit-tracing and completely positive entropy(in Chinese)[J]. Acta Mathemta Sinica, 1999,42 (1) : 99 - 104.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部