期刊文献+

求一类非凸规划问题全局解的确定性算法(英文)

A Deterministic Algorithm for Globally Solving a Class of Nonconvex Programming Problems
下载PDF
导出
摘要 本文对一类非凸规划问题(NP)给出一确定性全局优化算法.这类问题包括:在非凸的可行域上极小化有限个带指数的线性函数乘积的和与差,广义线性多乘积规划,多项式规划等.通过利用等价问题和线性化技巧提出的算法收敛到问题(NP)的全局极小. This paper presents a deterministic global optimization algorithm for solving a class of nonconvex programming problems (NP). This class includes such problems as:minimizing a sum,or difference for product or division of a finite number of linear functions with exponents,generalized linear multiplicative programming, polynomial programming,etc.-over nonconvex feasible region. By utilizing equivalent problem and linear relaxation technique,the proposed algorithm is convergent to the global minimum of (NP).
出处 《应用数学》 CSCD 北大核心 2008年第2期270-276,共7页 Mathematica Applicata
基金 the National Natural Science Foundation of China(10671057) the Natu-ral Science Foundation of Henan Institute of Science and Technology(06054)
关键词 非凸规划 全局优化 线性松弛 分枝定界 Nonconvex programming Global optimization Linear relaxation Branch and bound
  • 相关文献

参考文献8

  • 1Ryoo H S,Sahinidis N V. Global optimization of multiplicative programs[J]. Journal of Global Optimization,2003,26:387-418.
  • 2Kuno T. A branch and bound algorithm for maximizing the sum of several linear ratios[J]. Journal of Global Optimization, 2002,22 : 155 - 174.
  • 3Benson H P. On the global optimization of sum of linear fractional function over a convex set[J]. Journal of Optimization Theory and Application,2004,121:19-39.
  • 4Wang Y J, Shen P P, Liang Z A. A branch-and-bound algorithm to globally solve the sum of several linear ratios[J]. Applied Mathematics and Computation, 2005,168: 89 - 101.
  • 5Hoai-Phuony Ng T,Tuy H. A unified monotonic approach to generalized linear fractional programming [J]. Journal of Global Optimization, 2003,26:229 -259.
  • 6Gao Y L,Xu C X, Yan Y L. An outcome-space finite algorithm for solving linear multiplicative programming[J]. Applied Mathematics and Computation.2006,179(2) :494-505.
  • 7Shen P P. Linearization method of global optimization for generalized geometric programming[J]. Applied Mathematics and Computation, 2005,162:353-370.
  • 8Maranas C D,Floudas C A. Global optimization in generalized geometric programming[J]. Computers and Chemical Engineering, 1997,21(4) : 351-369.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部