期刊文献+

具有时滞的奇异扰动随机微分方程的均方指数稳定性(英文) 被引量:1

Exponential Stability in the Mean Square of Singularly Perturbed Stochastic Differential Equations with Delays
下载PDF
导出
摘要 本文利用常数变易公式,随机过程数学期望的性质,矩阵范数,测度的相关理论以及不等式技巧,对一类具有时滞的奇异扰动随机微分方程的均方指数稳定性进行了讨论,得到了该类方程均方指数稳定的充分条件的代数判据. In this paper, the exponential stability in the mean square of singularly perturbed stochastic systems with delays is concerned. By employing the formula for the variation of parameters, the property of the expectation of stochastic process, the technique of inequality and the norm and measure of matrix, an algebraic criterion for the exponential stability is obtained.
作者 郑继明
出处 《应用数学》 CSCD 北大核心 2008年第2期373-377,共5页 Mathematica Applicata
关键词 指数稳定性 奇异扰动 随机性 时滞 矩阵测度 Exponential stability Singularly perturbed Stochastic Delay Measure of matrix
  • 相关文献

参考文献16

  • 1Derstine M W,Gibbs H M, Hopf F A,Kaplan D L. Bifurcation gap in a hybrid optical system[J]. Phys. Rev. ,1982,26(A):3720-3722.
  • 2Mackey M C,Glass L. Oscillation and chaos in physiological control systems[J]. Science, 1977,197:287-289.
  • 3Longtin A, Milton J. Complex oscillations in the human pupil light reflex with mixed and delayed feedback[J]. Math. Biosci. , 1988,90: 183-199.
  • 4Zhu Wei, Xu Daoyi, Yang Chunde. Exponential stability of singularly perturbed impulsive delay differential equations[J]. J. Math. Anal. Appl. , 2007,328 :1161-1172.
  • 5Tian H J. The exponential asymptotical stability of singularly perturbed delay differentlal equations with a bounded lag[J]. J. Math. Anal. Appl. , 2002,270:143 - 149.
  • 6Liu X Z,Shen X M,Zhang Y. Exponential stability of singularly perturbed systems with time delay[J]. Appl. Anal., 2003,82:117-130.
  • 7Chen C C, Global exponential stabilisation for nonlinear singularly perturbed systems[J]. IEE Proceedings-Control Theory and Applications, 1998,145:377-382.
  • 8Corless M,Glielmo L. On the exponential stability of singularly pertured systems[J]. SIAM Journal on Control and Optimization, 1992,30 : 1338-1360.
  • 9Dragan V. Exponential stability for a class of singularly perturbed systems[J]. Revue Roumaine De Mathematiques Pures Et Appliquees, 1984,29 : 851-854.
  • 10Liao X X, Mao X R. Exponential stability and instability of stochastic neural netwoks[J]. Stochat. Anal. Appl., 1996,14(2) : 165-185.

同被引文献6

  • 1江明辉,沈轶,廖晓昕.变时滞随机微分方程的指数稳定性[J].工程数学学报,2006,23(6):961-965. 被引量:7
  • 2Mao X R. Stochastic differential equation and application[M].Chichester:Horwood Publishing,1997.
  • 3Mao X R,Alexandra R,Natalia K. Rumikhin-type theorems for stochastic functional diferential equations[J].FUNCTIONAL DIFFERENTIAL EQUATIONS,1998,(1/2):195-211.
  • 4Wang L S,Zhang Z,WangY F. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with markovian jumping parameters[J].Physics Letters A,2008,(18):3201-3209.
  • 5钟承奎.非线性泛函分析引论[M]兰州:兰州大学出版社,2004.
  • 6Coppel W A. Stability and asymptotic behavior of differential equations[M].Boston:D C Heath,1965.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部