摘要
利用加权平均思想和二阶微商的四阶紧致差分逼近公式,构造了一种求解一维抛物型方程的高精度半显式差分格式,其截断误差为O(τ2+h4).通过Fourier分析方法证明了该格式是无条件稳定的.通过数值算例验证了本文方法的精确性和可靠性.
A high accurate semi-explicit difference method is proposed for numerically solving one-dimensional parabolic equation.The truncation errors of the method are O(τ^2+h^4) and it is proved to be unconditionally stable by Fourier analysis.The numerical experiments prove the accuracy and reliability of present method.
出处
《西北师范大学学报(自然科学版)》
CAS
2008年第3期8-11,共4页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(10502026
10662006)
关键词
一维抛物型方程
半显式差分方法
高精度
无条件稳定
one-dimensional parabolic equation
semi-explicit difference method
high accuracy
unconditionally stable