期刊文献+

利用Hilbert-Huang变换的自适应带通滤波特性提取共振峰 被引量:4

Finding speech formant by using the character of Hilbert-Huang transform as an adaptive band-filter
下载PDF
导出
摘要 利用Hilbert-Huang变换的自适应带通滤波特性,提出了一种共振峰提取算法。该算法利用固有模态函数是均值为零的窄带调频调幅信号与语音信号声道模型的调频-调幅信号相一致的特点;并根据经验模态分解的自适应性,有效地利用了信号本身决定固有模态函数的中心频率和带宽的特性,不需预先估计带通滤波器频率和带宽便可得到共振峰分量,避免受虚假峰值、共振峰合并和高音调语音的影响。该算法既能精确提取共振峰,又能跟踪共振峰频率的变化。 A novel algorithm of finding the speech formant frequency by using the character of Hilbert- Huang transform as an adaptive band-filter is proposed. The algorithm utilizes the character that the intrinsic mode functions, which are zero mean narrow band frequency-amplitude modulation signals, are consistent with the frequency-amplitude modulation model of speech perfectly. Besides, according to the adaptability of empirical mode decomposition, the character that the signal itself decides the frequency and band of intrinsic mode functions is effectively applied Thus the formant components can be obtained without having to estimate the frequency and band of the band-filter in advance, and the influence of the interference of false peaks, merged formant and high-pitch voice can be avoided. This algorithm not only can accurately extract the ormant, but also can track the changes of the formant.
作者 于凤芹 肖志
出处 《声学技术》 CSCD 北大核心 2008年第2期266-270,共5页 Technical Acoustics
关键词 共振峰提取 HILBERT-HUANG变换 调频-调幅模型 formant Hilbert-Huang transform frequency and amplitude modulation model
  • 相关文献

参考文献6

  • 1黄海,陈祥献.基于Hilbert-Huang变换的语音信号共振峰频率估计[J].浙江大学学报(工学版),2006,40(11):1926-1930. 被引量:12
  • 2H M Teager, S M Teager. Some observation on oral airflow during phonation[J]. IEEE Transon Acoustics, Speech, and Signal Processing, ASSP, 28(5): 599-601.
  • 3Potamianos A, Maragos P. Speech formant frequency and bandwidth tracking using multiband energy demodulation [J]. IEEE Transon, Speech, and Signal Processing, 1995, 95 ( 1 ) : 784-787.
  • 4Norden E Huang, SHEN Zheng. The empirical mode decomposition and the hilbert spectrum for nonlinear and non stationary time series analysis[J]. Proceedings of the Royal Society of London, 1998, A454: 903-995.
  • 5Maragos P, Kaise J F, Quatieri T F. Energy separation in signal modulations with application to speech analysis[J]. Signal Processing, IEEE Transactions on., 1993, 41 (2): 3024-3051.
  • 6Flandrin P, Rillingg G. Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2): 112-114.

二级参考文献8

  • 1张家騄.元音的内在基频与讲话方式对共振峰的影响[J].声学学报,1989,14(6):401-406. 被引量:6
  • 2MARKEL J D.Spectral analysis of speech by linear prediction[J].IEEE Transactions on Audio and Electroacoustic,1973,21(3):140-148.
  • 3CHRISTENSEN R L,SREONG W J,PALMER E P.A comparison of three methods of extracting resonance information from predictor-coefficient coded speech[J].IEEE Transactions on ASSP,1976,24(1):8-14.
  • 4WATANABE A.Formant estimation method using inverse-filter control[J].IEEE Transactions on Speech and Audio Processing,2001,9(4):317-326.
  • 5RAO P,BARMAN A D.Speech formant frequency estimation:evaluating a nonstationary analysis method[J].Signal Processing,2000,80(8):1655-1667.
  • 6HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society,1998,454A:903-995.
  • 7FLANDRIN P,RILLING G,GONCALVES P.Empirical mode decomposition as a filter bank[J].IEEE Signal Processing Letters,2004,11(2):112-114.
  • 8张家騄.论语音技术的发展[J].声学学报,2004,29(3):193-199. 被引量:15

共引文献11

同被引文献36

  • 1赵毅,尹雪飞,陈克安.一种新的基于倒谱的共振峰频率检测算法[J].应用声学,2010,29(6):416-424. 被引量:9
  • 2钟佑明,秦树人.希尔伯特-黄变换的统一理论依据研究[J].振动与冲击,2006,25(3):40-43. 被引量:55
  • 3孟宗,戴桂平,刘彬.基于EMD时频分析方法的性能研究[J].传感技术学报,2006,19(4):1029-1032. 被引量:20
  • 4王宪保,周德龙,王守觉.基于仿生模式识别的构造型神经网络分类方法[J].计算机学报,2007,30(12):2109-2114. 被引量:10
  • 5Flandrin P,Rilling G,Goncalves P.Empirical mode decomposition as a filter bank[].IEEE Signal Processing Letters.2004
  • 6Bennett M,Michael S.Empirical mode decomposition and tissue harmonic imaging[].Ultrasound in Medicine&Biololgy.2005
  • 7Deering R,Kaiser J.The use of a masking signal to improve empirical mode decomposition[].IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.2005
  • 8Krubsack D A,Niederjohn R J.An autocorrelation pitch detector and voicing decision with confidence measures developed for noise corrupted speech[J].IEEE Trans on Acoustics,Speech,Signal Processing,1991,39(2):319-329.
  • 9Ross M J,Shaffer H L,Freudberg R,et a1.Average magnitude difference function pitch extractor[J].IEEE Transactions on Speech and Audio Processing,1999,22(5):353-362.
  • 10Ahmadi S,Andreas S S.Cepstrum-based pitch detection using a new statistical V/UV classify-cation algorithm[J].IEEE Transactions on Speech and Audio Processing,1999,7(3):333-338.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部