摘要
We theoretically study the electron transport properties for two coupled single-walled caxbon nanotube quantum dots connected to metallic electrodes under the irradiation of an external electromagnetic field at low tempera- tures. Using the standaxd nonequilibrium Green's function techniques, we examine the time-averaged transmission coefficient and linear conductance. It is shown that by some numerical examples, the photon-assisted inter-dot coupling causes Fano resonance and the conductance of the system is sensitive to the external field parameters. The transport dependence on the external field parameters may be used to detect the high-frequency microwave irradiation.
We theoretically study the electron transport properties for two coupled single-walled caxbon nanotube quantum dots connected to metallic electrodes under the irradiation of an external electromagnetic field at low tempera- tures. Using the standaxd nonequilibrium Green's function techniques, we examine the time-averaged transmission coefficient and linear conductance. It is shown that by some numerical examples, the photon-assisted inter-dot coupling causes Fano resonance and the conductance of the system is sensitive to the external field parameters. The transport dependence on the external field parameters may be used to detect the high-frequency microwave irradiation.
基金
Supported by National Natural Science Foundation of China under Grant No 10574042, the Specialized Research Fund for the Doctoral Programme of Higher Education of China under Grant No 20060542002, and the Hunan Provincial Natural Science Foundation of China under Grant No 06JJ2097.