期刊文献+

一类特殊的两性G-W分支过程及其谱半径

A Certain Bisexual G-W Branching Processes and the Spectral Radiuses
下载PDF
导出
摘要 谱半径是不可约马尔可夫链的一个很重要的特征数字.本文主要介绍了两性G-W分支过程,并计算了一类特殊配对函数L(x,y)=x的两性G-W分支过程的谱半径. Spectral radius is an important global characteristics of an irreducible Markov chain. In this paper, we mainly study the bisexual G-W branching processes and the spectral radiuses on the certain mating function L(x,y)=x bisexual G -W branching processes.
作者 徐群芳
出处 《大学数学》 北大核心 2008年第2期44-48,共5页 College Mathematics
基金 浙江省教育厅项目(20070939)
关键词 两性G—W分支过程 配对函数 谱半径 bisexual G -W branching process mating function spectral radius
  • 相关文献

参考文献14

  • 1Daley D J. Extinction probabilities for certain bisexual Galton-Watson branching processes[J]. Z. Wahrsch. Verw. Gebiete, 1968, 9:315-322.
  • 2Hull D M. A necessary condition for extinction in those bisexual Galton-Watson branching processes governed by superadditive mating punctions[J]. J. Appl. Prob. , 1982, 19: 847-850.
  • 3Hull D M. Conditions for extinction in certain bisexual Galton-Watson branching processes[J]. J. Appl. Prob. , 1984, 21: 414-418.
  • 4Bruss F T. A note on extinction Criteria for bisexual Galton-Watson Processes[J]. J. Appl. Prob. , 1984, 21: 915-919.
  • 5Daley D J, Hull D M and Taylor J M. Bisexual Galton-Watson branching processes with superadditive mating functions[J]. J. Appl. Prob., 1986, 23:585-600.
  • 6Bagley J H. On the asymptotic properties of a bisexual branching processes [J]. J. Appl. Prob., 1986, 23: 820-826.
  • 7Gonzalez M and Molina M. On the limit behaviour of a superadditive bisexual Galton-Watson branching processes [J].J. Appl. Prob. , 1996, 33: 960-967.
  • 8Gonzales M and Molina M. Some theoretical results on the progeny of a bisexual Galton-Watson branching process[J]. SerdicaMath. J., 1997, 23:15-24.
  • 9Molina M, Mota M and Ramos A. Bisexual Galton-Watson branching processes with population-size dependent mating[J]. J. Appl. Prob. , 2002, 39: 479-490.
  • 10Gonzales M and Molina M. A note on the L^1-convergence of a superadditive bisexual Galton-Watson process[J]. Extracta Math., 1998, 13: 69-72.

二级参考文献3

  • 1Woess W.Random walks on infinite graphs and groups[M].London:Cambridge University Press,2000.
  • 2Harris T E.The Theory of Branching Processes[M].Berlin:Springer-verlag,1963.
  • 3Athreya K B and Ney P E.Branching Processes[M].Berlin:Springer-verlag,1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部