期刊文献+

R^2上一类非线性抛物方程弱解的渐近性态

ASYMPTOTIC BEHAVIOR OF THE NONLINEAR PARABOLIC EQUATION IN R^2
下载PDF
导出
摘要 本文研究R2上一类非线性抛物方程弱解的渐近性态,利用改进的Fourier分解方法,证明了其解在L2范数下的衰减速率为(1+t)^(-1/2),与在相同初值条件下线性热方程解的衰减速率是一致的. In this paper the authors study the time decay of the weak solution to the nonlinear parabolic equation in R^2 and prove that the weak solution decays in L^2 norm at (1+t)^-1/2.The result is sharp in the sense that it coincides with that of the solution to the linear heat equation.
出处 《数学杂志》 CSCD 北大核心 2008年第3期308-312,共5页 Journal of Mathematics
基金 咸宁学院重点项目(KL0524)
关键词 L^2衰减 弱解 非线性抛物方程 L^2 decay weak solution nonlinear parabolic equation
  • 相关文献

参考文献7

  • 1Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Fluids [M]. New York: Gordon Breach, 1969.
  • 2Lions J L. Quelques Methodes de Resolution des Problemes aux limits non lineares[M]. Paris: Gauthier-Villiars, 1969.
  • 3Schonbek M E. L^2 decay for weak solutions of the Navier-Stokes equations[J]. Arch Rational Mech Anal. 1985,88 : 209-222.
  • 4Dong Boqing,Li Yongsheng. Large time behavior to the system of incompressible non-Newtonian fluids in R^2[J] .J Math Anal Appl, 2004,289:667-686.
  • 5Dong Boqing. Decay of solutions to equations modelling incompressible bipolar non-Newtonian fluids [J]. Electron J Differential Equations,2005,125 : 1-13.
  • 6Dong Boqing,Li Yongsheng. Large time behavior of the modified Navier-Stokes equations[J]. Acta Math Scientia,Series A,2006,26(4) :498-505.
  • 7Evans L C. Partial Differential Equations[M]. Rhode Ialand:Amer Math Soc, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部