摘要
本文研究R2上一类非线性抛物方程弱解的渐近性态,利用改进的Fourier分解方法,证明了其解在L2范数下的衰减速率为(1+t)^(-1/2),与在相同初值条件下线性热方程解的衰减速率是一致的.
In this paper the authors study the time decay of the weak solution to the nonlinear parabolic equation in R^2 and prove that the weak solution decays in L^2 norm at (1+t)^-1/2.The result is sharp in the sense that it coincides with that of the solution to the linear heat equation.
出处
《数学杂志》
CSCD
北大核心
2008年第3期308-312,共5页
Journal of Mathematics
基金
咸宁学院重点项目(KL0524)
关键词
L^2衰减
弱解
非线性抛物方程
L^2 decay
weak solution
nonlinear parabolic equation