期刊文献+

拟共形映射和John域 被引量:1

QUASICONFORMAL MAPPINGS AND JOHN DOMAINS
下载PDF
导出
摘要 本文研究了∫ΩBn中的John域与一致域和线性局部连通域的关系.利用平面中John域和拟圆的关系,获得了∫ΩBn中的John域成为一致域和线性局部连通域的几个充分条件,它们是2的推广. The main purpose of this paper is to study the relation among a John domain,a uniform domain and a linearly locally connected domain.We obtain several sufficient conditions for a John domain to be a uniform or linearly locally connected domain in R^-n by utilizing the relation between a John domain and a quasidisk in R^-2,then the relative results in R^-2 are generalized.
作者 王芳 高纯一
出处 《数学杂志》 CSCD 北大核心 2008年第3期313-318,共6页 Journal of Mathematics
基金 湖南省自然科学基金资助项目(05JJ30013)
关键词 一致域 拟共形映射 线性局部连通域 John域 Uniform domain quasiconformal mapping linearly locally connected domain John domain
  • 相关文献

参考文献9

  • 1Vaisala J. , Lecture on n-dimensional quasiconformal mapping. Lecture notes in math. [M]. SpringerVerlag: Berlin-Heidelberg-New York,1971.
  • 2Vaisal~ J. , Uniform domains[J]. J. Tohoku Math. , 1980,4 :101-118.
  • 3Martio O. , Sarvas J. , Injectivity theorems in plane and space[J]. Ann. Acad. Sci. Fenn. Ser. Math. , 1979,4:383-401.
  • 4Gehring F. W., Martio O., Lipschitz classes and quasiconformal mappings [J]. Ann. Acad. Sci. Fenn. Ser. Math. ,1985,10:203-219.
  • 5Gehring F. W. , Osgood B. G. , Uniform domains and the quasi-hyperbolic metric [J ]. J. Analyse Math. , 1979,36 : 50-74.
  • 6John F. ,Rotation and strain[J]. Comm. Pure Appl. , 1961,14:391-413.
  • 7Ahlfors L. V. , Quasiconformal reflexion[J]. Acta Math. , 1963, 109 : 291-301.
  • 8Gehring F. W. ,Characteristic Properties of quasidisks[M]. Seminaire de Mathematique Superieutes: Montreal, 1982.
  • 9方爱农,褚玉明,程金发.拟共形映照和线性局部连通集[J].数学学报(中文版),1996,39(1):45-49. 被引量:4

二级参考文献5

  • 1F. W. Gehring,O. Martio. Quasiextremal distance domains and extension of quasiconformal mappings[J] 1985,Journal d’Analyse Mathématique(1):181~206
  • 2F. W. Gehring. Univalent functions and the Schwarzian derivative[J] 1977,Commentarii Mathematici Helvetici(1):561~572
  • 3F. W. Gehring,J. V?is?l?. The coefficients of quasiconformality of domains in space[J] 1965,Acta Mathematica(1):1~70
  • 4F. W. Gehring. Extension of quasiconformal mappings in three space[J] 1965,Journal d’Analyse Mathématique(1):171~182
  • 5Lars V. Ahlfors. Quasiconformal reflections[J] 1963,Acta Mathematica(1):291~301

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部