期刊文献+

基于支持向量机的非线性离散动力学系统控制

Nonlinear discrete dynamic system based on support vector machines
下载PDF
导出
摘要 提出了一种用支持向量机辨识系统状态空间模型的非线性离散动力学系统控制新方法.在本方法中,采用最小二乘支持向量机在每一个工作点辨识非线性系统的局部最优线性化模型.针对该模型,采用常规的线性控制方法在每个工作点设计局部线性控制器,并在整个控制任务的每个工作点重复此设计过程.用该方法对两个典型的非线性离散系统采用极点配置技术进行了仿真验证,结果显示系统对参考输入具有满意的跟踪性能,证明该方法是有效和可行的. A new approach to control a nonlinear discrete dynamic system based on support vector machines (SVM) is proposed in this paper, which depends on the identification of a state space model by SVM. Firstly, a local optimal linearization model is identified at every operating point by least squares support vector machines (LS-SVM), which belongs to the least squares version of SVM. For a linearization model, any linear controller design technique can be applied to design local linear controller at the operating point, and design procedure is repeated at every operating point in the control task. The proposed approach is applied to two typical examples. Pole placement technique is chosen as the linear design technique. Finally, simulation results show that the system has satisfactory tracking performance with reference input because of the desirable ability of SVM.
作者 刘丁 刘涵
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第2期193-198,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60675048) 高等学校博士学科点专项科研基金资助项目(20040700010)
关键词 支持向量机 最小二乘支持向量机 非线性离散系统 线性控制技术 support vector machines least squares support vector machines nonlinear discrete system linear control technique
  • 相关文献

参考文献12

二级参考文献73

  • 1刘华平,孙富春,何克忠,孙增圻.模糊奇异摄动系统及其稳定性分析与综合(英文)[J].自动化学报,2003,29(4):494-500. 被引量:15
  • 2刘丁,钱富才,任海鹏,孔志强.离散混沌系统的最小能量控制[J].物理学报,2004,53(7):2074-2079. 被引量:9
  • 3刘涵,刘丁,李琦.一种遗传—模糊神经网络图像滤波器[J].仪器仪表学报,2004,25(3):310-312. 被引量:3
  • 4DUBOIS D , PRADE H . Operations on fuzzy numbers [ J ] . Int J of Systems Sciences, 1978,9:613 - 626.
  • 5MIZUMOTO M, TANAKA K. Fuzzy sets and type-2 under algebraic product and algebraic sum [ J ] . Fuzzy Sets and Systems, 1981,5 (3):277 - 290.
  • 6PARTRICIA Melin, OSCAR Castrilio. Intelligent adaptive control of non-linear dynamical systems with a hybrid neuro-fuzzy-genetic approach [C]//Proc of IEEE Int Conf on Systems, Man, and Cybernetics. Piscataway,NJ: IEEE Press, 2001:1508 - 1513.
  • 7LEE Ching-hung,LIN Yu-hing,LAI Wei-yu. Systems identification using type-2 fuzzy neural network (type-2 FNN) systems [C]//Proc of 2003 IEEE Int Symposium on Computational Intelligence in Robotics and Automation. Piscataway, NJ: IEEE Press, 2003:1264 -1269.
  • 8PARTRICIA M, OSCAR C. A new method for adaptive model-based control of nonlinear plants using type-2 fuzzy logic and neural networks [C]//Proc of IEEE Int Conf on Fuzzy Systems. Piscataway,NJ: IEEE Press, 2003: 420 - 425.
  • 9MENDELAND J M, BOB John R I. Type-2 fuzzy sets made simple [J]. IEEE Trans on Fuzzy Systems,2002,10(2): 117 - 127.
  • 10Ezhov A A, Khromov A G, Berman G P. Analog quantum neuron for functions approximation [ C ]//Proc of Int Joint Conf on Neural Networks. Piscataway,NJ: IEEE Press, 2001,2:1577 - 1582.

共引文献2300

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部