摘要
研究多通道不确定时滞大系统的鲁棒分散H∞控制问题,假定不确定性是时不变、范数有界,且存在于系统、时滞和输出矩阵中主要针对动态输出反馈控制问题基于Lyapunov稳定性理论,通过设定Lyapunov矩阵为合适的块对角结构,采用矩阵替换的方法推导出了使多通道不确定时滞大系统可鲁棒镇定,且满足一定的扰动水平的时滞依赖充分条件即线性矩阵不等式((LMI)有可行解,并且给出了具有期望阶数的分散鲁棒控制器的设计方法数值例子说明了本文提出方法的有效性.
This paper deals with the robust decentralized H-infinity control problem for uncertain multi-channel timedelay systems. The uncertainties are assumed to be time-invariant, norm-bounded, existing in the system, time-delay and output matrices. Our interest is focused on dynamic output feedback. A sufficient condition for the uncertain multi-channel time-delay system to be robustly stabilizable with a specified disturbance attenuation level is derived based on the theorem of Lyapunov stability theory and by setting the Lyapunov matrix as block diagonal appropriately according to the desired order of the controller, which is reduced to a feasibility problem of a linear matrix inequality(LMI). An example is given to show the efficiency of this method.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2008年第2期247-252,共6页
Control Theory & Applications
基金
国家自然科学重点基金资助项目(60634020)
湖南省自然科学基金资助项目(07JJ6138)
中国博士后科学基金项目(20060390883)
高校博士点专项科研基金项目(20050533028).
关键词
多通道系统
时滞
不确定性
分散H∞控制
线性矩阵不等式
multi-channel system time-delay uncertainty decentralized H-infinity control linear matrix inequality