期刊文献+

无刷双馈风力发电机模型降阶 第Ⅱ部分:模型降阶的合理性分析 被引量:4

Order reduction for brushless doubly-fed wind generators Part two: rationality analysis of reducing order
下载PDF
导出
摘要 无刷双馈风力发电系统是一个多时间尺度高维数系统,其稳定性分析与控制是非常复杂的.在实际问题分析中,具有快变特征的的动态常被略去.然而,在什么条件下无刷双馈电机的快动态允许被略去是一个必须回答的理论问题.以基于物理电路的计及快动态和慢动态的无刷双馈电机模型为基础,研究了降阶的条件.研究表明无刷双馈风力发电机在一些可接受的条件下,降阶是合理的和可行的,降阶不会引起"质"的错误.研究结论对简化无刷双馈风力发电机模型以及实现功率调节控制具有重要意义. The stability analysis and control of brushless doubly-fed wind generator is extremely complex due to its multi-time scale nature and high dimensionality. In order to carry out the stability analysis in control design, a common practice is to neglect the very fast transients. However, under what conditions the fast dynamics of brushless doubly-fed wind generator can be neglected is still an important theoretical question to be answered. Based on physical circuit of brushless doubly-fed wind generator including the fast and slow dynamics, the conditions of reducing model order are studied in this paper. The research shows that the result is reasonable and feasible under some acceptable conditions, without causing qualitative error. The conclusions presented in this paper have significance in model reduction and power regulation for brushless doubly-fed wind generator.
作者 刘永强 王佩
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第2期348-352,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(60474048 60534040)
关键词 无刷双馈风力发电机 模型降阶 稳定性 多时间尺度系统 brushless doubly-fed wind generator reduction order stability multi-time scale system
  • 相关文献

参考文献9

  • 1王佩,刘永强.无刷双馈风力发电机模型降阶第 Ⅰ部分:无刷双馈风力发电机的多时间尺度模型[J].控制理论与应用,2008,25(1):135-138. 被引量:7
  • 2刘永强,徐鹏.一类多时间尺度机电耦合系统降阶及稳定一致性[J].控制理论与应用,2008,25(1):139-140. 被引量:4
  • 3P W SAUER,S AHMED-ZAID,M A PAI.Systematic inclusion of stator transient in reduced order synchronous machine models[J].IEEE Transactions on Power Apparatus and Systems,1984,6(6):1348-1354.
  • 4SAUER P W,AHMED-ZAID S,KOKOTOVIC P V.An integral manifold approach to reduced order dynamic modeling of synchronous machines[J].IEEE Transactions on Power Systems,1988,2(1):17-23.
  • 5WINKELMAN J R,CHOW J H,ALLEMONG J J,et,al.Multi-time scale analysis of a power system[J].Automatica,1980,16(1):35-43.
  • 6CHOW J H.Time-scale modeling of dynamic networks with applications to power systems[M]//Lecture Notes in Control and Information Sciences.Berlin,Heidelburg,New York:Springer-Verlag,1982.
  • 7AVRAMOVIC B,KOKOTOVIC P V,WINKELMAN J R,et,al.Area decomposition for electro-mechanical models of power systems[J].Automatica,1980,16(4):637-648.
  • 8SAUER PW,LAGESSED J,AHMED-ZAIDS,et al.Reduced order modeling of interconnected multimachine power systems using timescale decomposition[J].IEEE Transactions on Power Systems,1987,5(2):310-319.
  • 9HSIAO-DONG CHIANG,MORRIS W,FELIX F WU.Stability region of nonlinear autonomous dynamical systems[J].IEEE Transactions on Automatic Control,1988,33(1):16-26.

二级参考文献10

  • 1WANG F, ZHANG F, XU L. Parameter and performance comparison of doubly fed brushless machine with cage and reluctance rotor[J]. IEEE Trans on Industry Application, 2002, 38(5): 1237 - 1243.
  • 2RUQI L, WALLAN A, SPEE R. Dynamic simula- tion of brusldess doubly fed machines[J]. IEEE Trans on Energy Conversion, 1991, 6(3): 445 - 451.
  • 3XU L, LING E LIPO T A. Transient model of a doubly excited reluctance motor[J]. IEEE Trans on Energy Conversion, 1991, 6( 1 ): 126 - 133.
  • 4BOGER M S. General pole number model of the brushless doubly fed machine[J]. IEEE Trans on Industry Application, 1995, 3(5): 1022 - 1027.
  • 5WINKELMAN J R, CHOW J H, ALLEMONG J J, et al. Multi-time scale analysis of a power system[J]. Automatica, 1980, 16(1): 35 - 43.
  • 6GHORBEL F, SPONG M W. Integral manifolds of singularly perturbed systems with application to Rrigid-link flexible-joint multibody systems[J]. Int J of Non-linear Mechanics, 2000, 35:133 - 155.
  • 7SOBLEV V A. Integral manifolds and decomposition of singularly perturbed systems[J]. Systems & Control Letters, 1984, 5: 169- 179.
  • 8KHALIL H K. Nonlinear Systems[M]. New York: Macmillan Publishing Company, 1991.
  • 9CHIANG Hsiao-Dong, FELIX M W, WU E Stability region of nonlinear autonomous dynamical systems[J]. IEEE Trans on Automatic Control, 1988, 33(1): 16 - 26.
  • 10刘永强,严正,倪以信,吴复立.双时间尺度电力系统动态模型降阶研究(一)——电力系统奇异摄动模型[J].电力系统自动化,2002,26(18):1-5. 被引量:26

共引文献9

同被引文献80

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部