期刊文献+

时标意义下微分方程的常数变易法 被引量:1

Variation of Constants of Differential Equations On Time Scales
下载PDF
导出
摘要 主要研究时标意义下的线性常微分方程解的常数变易法,同经典处理方式一样,通过齐次通解进行常数变易法直接导出时间模上非齐次线性常微分方程的解。证明出时标下高阶线性微分方程解的存在唯一性,并通过Wronskians行列式和Cramer法则得到其通解公式。 We study the variation of constants of solutions to linear differential equations on time scales. Similar to classical methods we can obtain the general solution of the inhomogeneous equation on time scales from the general solution of corresponding homogeneous equation though variation of constants. We prove the existence and uniqueness of solution to higher-order linear differential equation, and get the general solution by Wronskians determinant and Cramer rule.
机构地区 贵州大学理学院
出处 《贵州大学学报(自然科学版)》 2008年第3期225-229,共5页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金资助(No.10661004)
关键词 常数变易法 时标下常微分方程 通解公式. Variation of constants Ordinary differential equation on time scales General solution formula.
  • 相关文献

参考文献6

  • 1S HILGER. Analysis on measure chainsoA unified approach to continuous and discrete calculus[J]. Res. Math. 18(1990) 18 -56.
  • 2M BOHNER,A PETER SON. Dynamic Equations on Time Scales. An Introduction with Applications[J]. Birkhauser Boston, Inc., Boston, MA, 2001.
  • 3V LAKSHMILKANTHAM, S SIVASUDARAM, B KAYMAKCALAN. Dynamical Systems on Measure Chains[J]. KIuwer Academic Publishers, Boston, 1996.
  • 4ASHLEY ASKEW. Methods of Solution of Second Order Linear Equations on Time Scales[J]. Clayton state university Morrow Georisa 1- 13.
  • 5王柔怀,伍卓群,常微分方程讲义[M].人民教育出版社,1963.12.
  • 6RAVI AGARWAL. Dynamic equations on time wales :a survey[J]. Journal Computational and Applied Mathematic 141(2002)1 -26.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部