期刊文献+

基于自适应变异特性粒子群算法的无功优化

Reactive Power Optimization Based on Adaptive Mutation Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对电力系统无功优化问题,提出了1种自适应变异特性粒子群算法来克服粒子群优化方法容易早熟而陷入局部最优解的缺点。该方法以种群适应度方差为量化指标,动态衡量和监视粒子群体的聚集情况,并对聚集的粒子赋予变异操作,用以提高整个群体的全局寻优能力。通过对IEEE-6和IEEE-30测试系统的无功优化问题计算及结果分析表明该方法快速、高效、准确。 To deal with reactive power optimization problem, an adaptive mutation particle swarm optimization algorithm (AMPSO) is presented to avoid the premature phenomenon in PSO. In AMPSO, swarm fitness variance is applied to judge and monitor particles' aggregation condition and mutation operator is acting on aggregating particles to improve method's global searching ability. The proposed algorithm is tested on IEEE-6 and IEEE-30 bus systems. The results show its better performance on celerity, accuracy and efficiency.
出处 《山西电力》 2008年第2期7-9,28,共4页 Shanxi Electric Power
关键词 粒子群优化 无功优化 变异 方差 particle swarm optimization (PSO) reactive power optimization, mutation, variance
  • 相关文献

参考文献5

  • 1[1]Kenji Iba.Reactive Power Optimization by Genetic Algo-rithm[J].IEEE Transactions on Power Systems,1994,9(2):685-692.
  • 2[2]Zwe-Lee Gaing.Particle swarm optimization to solving the e-conomic dispatch considering the generator constraints[J].IEEE Transactions on Power Systems,2003,18(3):1187-1195.
  • 3刘自发,葛少云,余贻鑫.基于混沌粒子群优化方法的电力系统无功最优潮流[J].电力系统自动化,2005,29(7):53-57. 被引量:74
  • 4[4]Lee,K.Y,Xiaomin Bai,Young-Moon Park.Optimiza-tion Method for Reactive Power Planning by Using a Modi-fled Simple Genetic Algorithm.[M].IEEE Transactionson Power System,1995,10(4):1843-1850.
  • 5李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,40(17):12-14. 被引量:60

二级参考文献28

  • 1Kennedy J,Eberhart R C.Particle Swarm Optimization[C].In:Proc IEEE International Conference on Neural Networks,Ⅳ Piscataway,NJ:IEEE Service Center, 1995:1942~1948
  • 2Shi Y,Eberhart R C.Particle Swarm Optimization :developments,applications and resources[C].In:Proc Congress on Evolutionary Computation 2001 NJ:Piscataway,IEEE Press,2001:81~86
  • 3Shi Y,Eberhart R C.A modified particle swarm optimizer[C].In:IEEE World Congress on Computational Intelligence,1998:69~73
  • 4Shi Y,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimization[C].In: Proc Congress on Evolutionary Computation, 2001:101~106
  • 5Lovbjerg M,Rasmussen T k,Krink T. Hybrid Particle Swarm Optimiser with Breeding and Subpopulation[C].In :Proc Congress on Evolutionary Computation, 2001
  • 6Ciuprina G,Ioan D,Munteanu I. Use of Intelligent-Particle Swarm Optimization in Electromagnetics[J].IEEE Trans on Magnetics ,2002;38(2): 1037~1040
  • 7Brits R,Engelbrecht AP,van den Bergh F.A Niching Panicle Swarm Optimizer[C].In:4th Asia-Pacific Conference on Simulated Evolution and Learning, 2002
  • 8van den Bergh F,Engelbrecht AP.A New Locally Convergent Particle Swarm Optimizer[C].In:IEEE Conference on Systems,Man,and Cybernetics, 2002
  • 9Manrice Clerc,James Kennedy.The Particle Swarm-Explosion,Stability,and Convergence in a Multidimensional Complex Space [J].IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION,2002;6(1):58~73
  • 10F van den Bergh. An Analysis of Particle Swarm Optimizers[D].PhD thesis. Department of Computer Science ,University of Pretoria,South Africa, 2002

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部