摘要
设p是素数,对于非负整数k,设F(k)=22k+1是第k个Fermat数,本文证明了:方程x+y+xy=2p-1没有正整数解(x,y)的充要条件是P=2或者P=F(k)且F(2k)也是素数.
Letp be aprime. For any nonnegative integer k, let F(k) = 2^2k + 1 be the k -th Fermat number. In this paper we prove that equation x + y + xy = 29-1 has no positive integer solution (x ,y) if and only if either p = 2 orp = F(k) and F(2k) is also aprime.
出处
《湘南学院学报》
2008年第2期13-13,21,共2页
Journal of Xiangnan University
基金
国家自然科学基金(No.10271104)
广东省自然科学基金项目(No.06029035)