摘要
文章应用一种新颖的分析方法,即不变概率测度方程差分化方法研究了一个具有典范GI//M 1型结构矩阵的一般到达离散时间早到排队系统,获得了该排队系统的稳态队长分布和顾客的稳态逗留时间分布,并且进一步给出了这些指标的随机分解及其PH结构。值得注意的是所使用的分析方法较现在普遍使用的矩阵几何解法更简洁明了。
In this paper, by applying a new way-the invariant probability measure equation difference, we study a general arrival and discrete time queuing model with the matrix of GI/M/1 type and canonical form, and obtain both the stationary distribution of queue length and the steady distribution of sojourn time. Furthermore, we also give the stochastic decomposition and pH structure of these two indices. It is deserved to he mentioned that the analytic method used in this paper is more concise than the matrix geometric solutions method which is popularly used currently.
出处
《四川理工学院学报(自然科学版)》
CAS
2008年第2期12-17,共6页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金
四川省教育厅自然科学重点项目基金(2006A067)
四川理工学院人才引进科研启动基金资助
关键词
早到达排队系统
队长
逗留时间
不变概率测度方程差分化
随机分解
PH结构
early arrival queuing system
set up/closed down
queue length
sojourn time
invariant probability measure equation difference
stochastic decomposition
pH structure