期刊文献+

分析一类非边界状态变体排队系统的新方法

A New Method for Analysis Some Non-boundary State Variation Queueing System
下载PDF
导出
摘要 文章应用一种新颖的分析方法,即不变概率测度方程差分化方法研究了一个具有典范GI//M 1型结构矩阵的一般到达离散时间早到排队系统,获得了该排队系统的稳态队长分布和顾客的稳态逗留时间分布,并且进一步给出了这些指标的随机分解及其PH结构。值得注意的是所使用的分析方法较现在普遍使用的矩阵几何解法更简洁明了。 In this paper, by applying a new way-the invariant probability measure equation difference, we study a general arrival and discrete time queuing model with the matrix of GI/M/1 type and canonical form, and obtain both the stationary distribution of queue length and the steady distribution of sojourn time. Furthermore, we also give the stochastic decomposition and pH structure of these two indices. It is deserved to he mentioned that the analytic method used in this paper is more concise than the matrix geometric solutions method which is popularly used currently.
出处 《四川理工学院学报(自然科学版)》 CAS 2008年第2期12-17,共6页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川省教育厅自然科学重点项目基金(2006A067) 四川理工学院人才引进科研启动基金资助
关键词 早到达排队系统 队长 逗留时间 不变概率测度方程差分化 随机分解 PH结构 early arrival queuing system set up/closed down queue length sojourn time invariant probability measure equation difference stochastic decomposition pH structure
  • 相关文献

参考文献8

  • 1Neuts M F.Matrix Geometric Solutions in Stochastic Models [M].Baltimore: Johns Hopkins University Press, 1981.
  • 2徐秀丽,田乃硕.带关闭期和启动期的GI/M/1排队[J].燕山大学学报,2003,27(1):68-70. 被引量:5
  • 3田乃硕,张忠君.关闭—启动型Geom/G/1离散排队及其在ATM网络中的应用[J].运筹与管理,2000,9(2):1-7. 被引量:16
  • 4Tian N S,Zhang D,Cao J.The GI/M/1 queue with exponential vacations[J]. Queueing Systems, 1989, 5: 331-344.
  • 5Tian N S, Zhang Z G.The discrete-time GI/Geo/l queue with multiple vacations[J].Queueing systems,2002 40: 283- 294.
  • 6Hassan M, Atiquzzaman M. A delayed vacation model of an M/G/1 queue with setup time and its application to SVCC-Based ATM networks [J]. IEICE, Trans. Commun. E80-B, 1997: 317-323.
  • 7Hunter J. Mathematical techniques of applied probability,Vol. 2[M]. New York: Academic Press, 1983.
  • 8Chae K C,Lee S M, Lee H W. On stochastic decomposition in the GI/M/1 queue with single exponential vacation[J]. Operation research letters, 2006, 34(6): 706-712.

二级参考文献13

  • 1田乃硕.Geometric/G/1休假随机服务系统[J].应用数学与计算数学学报,1993,7(2):71-78. 被引量:20
  • 2岳德权,赵玮.具有延误休假的GI/M/1排队系统[J].运筹学杂志,1994,13(2):47-48. 被引量:3
  • 3Hassan M, Atiquzzaman M. A delayed vacation model of an M/ G/1 queue with setup time and its application to SVCC-Based ATM networks. IEICE Trans Commun E80-B, 1997, 317-323
  • 4DukhovnyA. Vacations in GIxMy/1 systems and Riemann boundary value problems. Queueing System, 1997, (27): 351-366
  • 5Niu Z, Takahashi Y. A finit capacity queue with exhaustive vacation/ close-down/setup time and Markovian arrival process. Questa, 1999,31:1-23
  • 6Kobayashi H, Konheim G. Queueing models for computer communications system analysis[J]. IEEE Trans. Com. C25, 1977, 2-29.
  • 7Schwartz M. Broadhand Integrated Networks[M]. New York: Prentice Hall, 1996.
  • 8Doshi B. Queueing systems with vacations-A survey[J]. QUESTA, 1996, (1) :29-66.
  • 9Takagi H. Analysis of a discrete time queueing system with time-limited service[J], QUESTA, 1994,18(2) : 183-197.
  • 10Hassan M, Atiquzzaman M. A delayed vacation model of an M/G/1 queue with setup time and Its application to SVCCbased ATM networks[J], IEEE, Trans, Com. E80-B, 1997(2):317-323.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部