期刊文献+

基于非线性反馈方法的环链系统的混沌反控制 被引量:1

Chaotic Anti-control of Circle-linked System Based on the Method of Nonlinear Feedback
下载PDF
导出
摘要 针对一种新的系统——环链系统,从混沌反控制定义的本质出发,利用非线性反馈的控制方法,研究了该系统的混沌反控制问题。通过巧妙地引入跟踪控制,成功实现了该系统的混沌化,并且该方法不需计算Lyapunov函数,降低了混沌反控制的计算量。仿真结果表明了该系统可快速有效地跟踪给定的混沌系统,充分的显示了该系统的优越性。 For a new system-circle-linked, the problem about chaotic anti-control of circle-linked system is considered via the method of the nonlinear feedback, according to the nature of anti-control of a chaos system. By introducing tracking control subtly, the chaotic anti-control of the new circle- linked system is successfully realized. The proposed method need not estimate the Lyapunov function of the chaotic system, and can dramatically reduce the computation.Numerical simulations show the circlevlinked system can track the given chaotic system fast and efficiently, fully demonstrated the superiority of the circle-linked system.
出处 《四川理工学院学报(自然科学版)》 CAS 2008年第2期40-43,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 环链系统 跟踪控制 混沌 反控制 circle-linked system tracking control chaos anti-control
  • 相关文献

参考文献11

  • 1Ott E, Grebogi C, Yorke J A.Controlling ChaosE [J].Phys Rev Lett,1990,64(11):1196-1199.
  • 2Chen G R, Yu X H. On time-delayed feedback control of chaotic systems [J].IEEE Trans Circuits Syst.I,1999,46(6): 767-772.
  • 3Huberman B A, Lumer E. Dynamics of Adaptive systems [J]. IEEE Trans Circuits and systems,1990,37 (4):547-550.
  • 4Lima B, Pettini M. Suppression of Chaos by Resonant Parametric Perturbations [J]. Phys Rev A,1990,41: 726- 733.
  • 5Chen G, Lai D.Feedback anticontrol of discrete chaos[J]. Int J Bifurcation and Chaos, 1998, 8(7): 1585-1590.
  • 6Wang X F, Chen G. Chaotification via arbitrarily small feedback controls: theory, method, and applications [J]. Int J Bifurcation and Chaos, 2000, 10(3): 549-570.
  • 7黄玮,张化光.一类多维连续线性系统的混沌反控制[J].东北大学学报(自然科学版),2004,25(8):727-730. 被引量:7
  • 8关新平,范正平,张群亮,王益群.连续时间稳定线性系统的混沌反控制研究[J].物理学报,2002,51(10):2216-2220. 被引量:42
  • 9王宝华,王永成,杨成梧.基于非线性反馈方法的连续时间稳定线性系统的混沌反控制[J].电机与控制学报,2004,8(2):124-126. 被引量:9
  • 10Ma Y C, Zhang Q L, Zhang X F. Decentralized output feedback robust control for a class of uncertain nonlinear circle-linked large-scale systems [J]. International Journal of Information and Systems Sciences. 2006, 2(1): 20-30.

二级参考文献30

  • 1张嗣瀛.复杂控制系统的对称性及相似性结构[J].控制理论与应用,1994,11(2):231-236. 被引量:57
  • 2[10]Chen G R 1981 IEEE Trans. Circuits Syst. Soc. Newsletter, Match 1998, 1
  • 3[11]Chen G R and Lai D 1998 Int. J. Bifur. Chaos. 8 1585
  • 4[12]Wang X F and Chen G R 1999 Int. J. Bifur. Chaos. 9 1435
  • 5[13]Wang X F and Chen G R 2000 Int. J. Bifur. Chaos. 10 549
  • 6[14]Wang X F and Chen G R 2000 IEEE Trans, Circuits Syst. 47 1539
  • 7[15]Wu C W and Chua L O 1996 Int. J. Bif. Chaos. 6 801
  • 8[16]Nijmeijer H and Berghuis H 1995 IEEE Trans, Circuits Syst. 42 473
  • 9Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys Rev Lett, 1990,64(11):1196-1199.
  • 10Pyragas K. Continuous control of chaos by self-feedback[J]. Phys Lett A, 1992,170(6):421-428.

共引文献44

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部