期刊文献+

一种基于CB模型的彩色图像分割方法 被引量:3

A Method for Color Image Segmentation Based on CB Model
下载PDF
导出
摘要 CB模型是一种把图像分为色度和亮度方面的彩色模型,对图像进行分割去噪时可以很好地保留图像的细节和边缘。首先把一幅含有噪声的彩色图像分割成几何和摆动部分(纹理和噪声),然后利用CB模型分别在色度和亮度两个通道上求几何和摆动部分,再合成图像的几何和摆动部分,其中几何部分即图像去噪后的图像。实验证明CB模型可以快速准确地分割出目标,消除图像的噪声部分,是一种有效的图像分割方法。 The CB model which can hold the details of the image and keep boundary well is a chromaticity and brightness color model . In this paper,split an image into two components: a geometrical component and an oscillatory component (texture and noise ), and then find the solutions of the two component on the chromaticity and brightness channels by CB model. After this,separately compose the value of the two components on the two channels . During the two components, the geometrical component is the denoised image. By the experiment, can conclude that the CB model is an efficient method for image segmentation and it could split the object quickly and precisely, also denoise the noise of the image.
出处 《计算机技术与发展》 2008年第5期44-46,共3页 Computer Technology and Development
基金 安徽省自然科学研究项目(2006KJ028B)
关键词 CB模型 总变分 图像分割 色度 亮度 CB model total variation hnage segmentation chromaticity brightness
  • 相关文献

参考文献8

  • 1冈萨雷斯.数字图像处理[M].第2版.北京:电子工业出版社,2003.
  • 2黄庆明,张田文,潘少静.基于色彩学习的彩色图象分割方法[J].计算机研究与发展,1995,32(9):60-64. 被引量:23
  • 3Chan T F,Kang S H,Shen J. Total variation denoising and enhancement of color images based on the CB and HSV color models[J]. J. Visual Comm. and Image Rep, 2001, 12(4): 422 - 435.
  • 4Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean[ C]//Lewis J B. Memorial Lectures, Vol. 22 of University Lecture Series, AMS. Providence: [s.n.] ,2001:78 - 89.
  • 5Blomgren P V. Total Variation Methods for Restoration of Vector Valued Images[D]. [s.l.]:Dept. of Math. ,UCLA, 1998.
  • 6Blomgren P V,Chan T F. Color TV: Total Variation Methods for Restoration of Vector Valued Images [ J ]. IEEE Trans. Image Processing, 1998,7:304 - 309.
  • 7Aujd J - F,Aubert G,Blanc- Feraud L,et al. Image decomposition into a bounded variation component and an oscillating component[J]. Journal of Mathematical Imaging and Vision, 2005,22:71 - 88.
  • 8Aujol J - F, Aubert G, Blanc - Feraud L, et al. an image:Application to SAN images[C]//in: Scale- Space '03, Vol. 2695 of Lecture Notes in Computer Science. [ s.l. ]:[s. n. ] ,2003:297- 312.

二级参考文献1

  • 1Lee Hsienche,IEEE Trans on PAMI,1990年

共引文献24

同被引文献27

  • 1Lin Shengyou, Shi Jiaoying. A color edge detection operation based on human vision [ J ]. Journal of Images and Graphics, 2005, 10( 1 ) :45-47.
  • 2Wang Jianan, Kong Jun. A region-based SRG algorithm for color image segmentation[ C ]//Proceedings of the Sixth International Conference on Machine Learning and Cybernetics. Hong Kong:[s. n. ], 2007:19-22.
  • 3Zhang Yongyue, Brady M, Smith S. Segmentation of Brain Image Through a Hidden Markov Random Field Model and the Expectation- Maximization Algorithm [ J ]. IEEE Transaction on Medical Image, 2001, 20( 1 ) :45-57.
  • 4Gao Pengdong, Lu Yongquan, Qiu Chu. Performance Comparison between Color and Spatial Segmentaton for Image Retrieval and Its Parallel System Implementation [ J ]. Journal of Liaoning Normal University, 2008, 30(3 ):539-543.
  • 5Fernandes S D F, Monteiro A M V. Parallelism and images: a parallelization experiment for image segmentation with an application for automatic classification of scenes obtained from orbital platforms[ C]//Proceedings XIII Brazilian Symposium on Computer Graphics and Image Processing. [ s. l. ] : [ s. n. ] ,2000:342-344.
  • 6Kenney C, Deng Y, Manjunath B S. Peer group image enhancement[ J]. IEEE Transaction on Image Processing ,2001, 10(2) :326-334.
  • 7金军.基于子块的区域生长的彩色图像分割算法[J].计算机工程与应用,2008,44(1):82-83. 被引量:6
  • 8刘盈盈,石跃祥,莫浩澜.基于改进K-均值算法在彩色图像分割中的应用[J].计算机工程与应用,2008,44(29):191-192. 被引量:11
  • 9胡建华,王莹.车用线束端子压接工艺研究[J].汽车零部件,2010(10):64-67. 被引量:14
  • 10邓仕超,刘铁根,萧泽新.应用Canny算法和灰度等高线的金相组织封闭边缘提取[J].光学精密工程,2010,18(10):2314-2323. 被引量:13

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部