期刊文献+

一种新的基于Fisher准则的线性特征提取方法 被引量:2

A New Linear Feature Extraction Method Based on Fisher Criterion
下载PDF
导出
摘要 针对现有的基于Fisher准则的线性特征提取方法存在的不足,提出了一种新的加权Fisher特征提取方法。该方法通过引入一个加权函数来削弱边缘类别的影响,减少投影空间中相邻类别间的重叠,提高了识别正确率。针对小样本问题,也给出了该算法的一个可行的最优判别矢量集的求解方法。分别对COIL图像数据库以及ORL人脸数据库进行实验,结果表明,就识别率而言,该方法得到的最优判别矢量具有更好的特征提取能力。 A novel weighted Fisher discriminant analysis is developed in this paper. The approach aims at overcoming the drawback of the previous FDA- based methods by introducing a weighting function to weaken the influence of outlier classes and reduce the large overlapping of neighboring classes in projection space. And a feasible solution to this new approach is suggested. Experimental results on the ODIL and ORL database show that new optimal discriminant vectors have more powerful ability of feature extraction in terms of rates of classification.
作者 黄国宏 刘刚
出处 《计算机技术与发展》 2008年第5期227-230,共4页 Computer Technology and Development
关键词 特征提取 小样本问题 FISHER准则 人脸识别 feature extraction small sample problem Fisher criterion face recognition
  • 相关文献

参考文献12

  • 1Tian Q. Companson of statistical pattern recognition algorithms for hybrid processing[J].Ⅰ.Linear - mapping algorithm. Opt. Soc. Am. ,1988,A5(10) :1655- 1669.
  • 2Tian Q. Comparison of statistical pattern recognition algorithms for hybrid processing[J].Ⅱ. Eigenvector- based algorithms. Opt. Soc. Am. ,1988,A5(10):1670-1682.
  • 3Swets L, Weng J. Using discriminant eigenfeatures for image retrieval[J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8) :831 - 836.
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces versus fisherfaces: Recognition using class specific linear projection[J].IEEE Transactious on Pattern Analysis and Machine Intelligence, 1997,19 : 711 - 720.
  • 5Cheng J L, Wechsler H. A shape - and texture - based enhanced Fisher classifier for face recognition[J]. IEEE Transactions on Image Processing,2001,10(4) :598 - 608.
  • 6Wilks S S. Mathematical Statistics[ M]. New York: Wiley Press, 1962:577 - 578.
  • 7Duda R, Hart P. Pattern Classification and Scene Analysis [ M]. New York: Wiley Press, 1973.
  • 8Foley D H, Sammon J W. An optimal set of discriminant vectors[J]. IEEE Trans. Cornput.. 1975,24 281 - 289.
  • 9Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(6) :978 - 983.
  • 10Zhong J, Yang J Y, Hu Z S, et al. Face Recognition based on uncorrelated discriminant transformation[ J ]. Pattern Recognition,2001,33(7) : 1405 - 1416.

同被引文献18

  • 1李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:108
  • 2黄利文,梁飞豹.改进的Fisher判别方法[J].福州大学学报(自然科学版),2006,34(4):473-477. 被引量:12
  • 3Donoho D. For most large underdetermined systems of linear equations the minimal 11-norm solution is also the sparsest so- lution[J]. Comm. on Pure and Applied Math,2006,59(6) : 797 -829.
  • 4Amaldi E, Kann V. On the approximability of minimizing non- zero variables or unsatisfied relations in linear systems [ J ]. Theoretical Computer Science, 1998,209:237-260.
  • 5Ji Yangfeng, l,in Tong, Zha Hongbin. Mahalanobis Distance Based Non-negative Sparse Representation for Face Recogni- tion [ C ]//IEEE International Conference on Machine Learn- ing and Applications. [ s. 1. ] : [ s. n. ] ,2009.
  • 6He X, Yon S, Hu Y, et al. Face recognition using Laplacian- faces [ J ]. IEEE Trans. on Pattern Analysis and Machine Intel- ligence ,2005,27 ( 3 ) :328-340.
  • 7Belhumeur P,Hespanda J,Kriegman D. Eigen faces vs. Fisher faces: recognition using class specific linear projection [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,19(7) :711-720.
  • 8Chen S, Donoho D. Atomic decomposition by basis pursuit [ J]. SIAM Journal on Scientific Computing, 1999,20 ( 1 ) :33 -61.
  • 9Anderson C W, Turkman K F. The joint limiting distribution of sums and maxima of stationary sequences[J]. J. Appl.Prob, 1991, 28:33-44.
  • 10Ho Hwai-Chung, Hsing Tailen. On the asymptotic joint distribution of the sum and maximum of stationary normal random variables[J]. J. Appl. Prob, 1996, 33:138-145.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部