期刊文献+

遥感蒸散模型的时间重建方法研究 被引量:22

Research on Temporal Reconstruction of Evapotranspiration by Using Remote Sensing
下载PDF
导出
摘要 本文提出的遥感蒸散模型的时间重建方法考虑了逐日蒸散可能的变化情况,在阻抗-彭曼单层模型的基础上,将图像去云处理与时间重建结合在一起,先使用SEBS能量平衡余项模型获得晴好日的地表阻抗信息,选择了叶面积指数LAI作为反映植被表面阻抗的参量,通过时间序列谐波分析(HANTS)获得逐日逐像元的LAI信息,将晴好日的阻抗信息扩展至待定日,并使用因子函数表达了极端温湿条件对植被叶面阻抗的限制作用。使用中科院禹城站2003年作物季的大型蒸渗仪数据对模型所得逐日蒸散结果进行了验证。在作物生长季,模型结果相对于实测结果表现出了良好的相关性(R2≈0.7),远优于作为对比的蒸发比不变法。受单层模型假设局限,方法在裸地及稀疏植被上的结果还存在着较大的误差。 Temporal reconstruction of evapotranspiration (ET), which means deriving continuous, complete annual ET from fragmentary satellite measurement, is a problem full of uncertainty in remote sensing application. Traditionally, evaporative fraction (LE/H) is simplified as constant in a short period so that weekly or long term ET could be estimated from a single clear satellite image. In this way, variation of daily ET is often neglected and the amount of ET is hard to compare with those at the same time in another year. The objective of this research is to develop a new reconstruction algorithm to retrieve continuous and actual ET dataset and provide valuable temporal profile for agriculture and ecology application. This algorithm considers both the spatial and temporal discontinuity, and is a combination of SEBS (Surface Energy Balance System) and Penman- Monteith model: SEBS model is used to derived latent heat in clear days, and then surface resistance is inverted from PM equation; Leaf area index (LAI), is interpolated and smoothed to daily term by using HANTS (Harmonic Analysis of Time Series) method. Then surface resistance of the cloudy days is related to those from neighboring clear days with a function of LAI, minimal air temperature and vapour pressure deficit. Daily ET estimation is compared to lysimeter measurements recorded in Yucheng agriculture site and shows a good correlation coefficient in crop growing season (R^2≈ 0.7). Model result is not satisfactory on bare and sparse land because of the limitation of the one-layer assumption in PM equation, which requests that an independent component of soil evaporation should be added into the algorithm.
出处 《地理科学进展》 CSCD 北大核心 2008年第2期53-59,共7页 Progress in Geography
基金 世界银行GEF项目(海河流域水资源水环境综合规划)资助
关键词 地表蒸散(ET) 遥感反演 时间重建 MODIS regional evapotranspiration(ET) remote sensing retrieve temporal reconstruction MODIS
  • 相关文献

参考文献13

  • 1吴炳方,邵建华.遥感估算蒸腾蒸发量的时空尺度推演方法及应用[J].水利学报,2006,37(3):286-292. 被引量:37
  • 2张仁华,孙晓敏,刘纪远,苏红波,朱治林,唐新斋.定量遥感反演作物蒸腾和土壤水分利用率的区域分异[J].中国科学(D辑),2001,31(11):959-968. 被引量:37
  • 3Nishida K, R R Namani and S W Running, et al. An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research,2003,108 (D9): 4270.
  • 4Henlen A H, L Ray, M Qiaozhen, S W, Running. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment,2007,106:285-304.
  • 5辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报,2003,7(3):233-240. 被引量:68
  • 6Su Z. The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences,2002, 6 (1): 85-99.
  • 7Pauwels V R, Samson R.Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland..Agricultural Water Management, 2006, 82 (1-2): 1-24.
  • 8Testi L, Orgaz F, Villalobos F J. Variations in bulk canopy conductance of an irrigated olive (Olea europaea L.) orchard..Environmental and Experimental Botany,2006, 55 (1-2): 15-28.
  • 9Qiaozhen Mu, Faith Ann Heinsch, Maosheng Zhao, S. W. R.Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 2007,111 (4):519-536.
  • 10Mao K, Z Qin, J Shi, and P Gong. A Pratical Split-window algorithm for retrieving land-surface temperature from MODIS data..International Journal of Remote Sensing, 2005, 26(5), 3181-3204.

二级参考文献35

  • 1谢贤群,土壤-作物-大气系统水分运动实验研究,1997年,90页
  • 2许越先,区域治理与农业资源开发.黄淮海平原资源、环境与农业,1995年,1页
  • 3李宝庆,中国科学院禹城综合试验站年报,1991年,127页
  • 4周延辉,中国科学院禹城综合试验站年报,1991年,55页
  • 5雷志栋,土壤水动力学,1988年,68,144页
  • 6陈镜明.现用遥感蒸散模式中的一个重要缺点及改进[J].科学通报,1988,6:454-457.
  • 7Wu B F, Liu C L. Crop growth monitor system with coupling of NOAA and VGT data[A]. Vegetation 2000 Proceedings[C], 2000:355~359.
  • 8Lloyd D. A phonological classification of terrestrial vegetation cover using shortwave vegetation index imagery[J]. International Journal of Remote Sensing, 1990,11:2269~2279.
  • 9White M A, Thorton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemical Cycles,1997,11:217~234.
  • 10Kaduk J, Heimann M. A prognostic phenology model for global terrestrial carbon cycle model[J]. Climate Research,1996,6:1~19.

共引文献245

同被引文献323

引证文献22

二级引证文献271

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部