摘要
针对模型方程提出一种基于原函数导数逼近的数据重构方法,结合导数的紧致逼近构造了相应的状态变量递推式,从而构造了高精度的通量差分有限面积差分格式,并将此格式推广应用于Euler方程。通过实例分析,证明这种方法对叶栅绕流等复杂流动现象的模拟是有效的。
A new reconstruction method based on the difference of primitive function derivation (PFDD) is developed to counter the model equation. Connected with the derivative compact approximation, the recurrence formula for the relevant variable of states and the high accurate finite different scheme have been formed. The PFDD reconstruction with compact approximation is presented and used in Eular equation. Results reveal that the new method is effective for complex phenomenal simulation such as cascade flows.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1997年第11期65-68,共4页
Journal of Tsinghua University(Science and Technology)
基金
国家自然科学基金
国家教委博士后基金
关键词
空气动力学
通量差分分裂
原函数
数据重构
computational fluid dynamics
finite difference method
aerodynamics
cascade flow