期刊文献+

基于局部对比度的自适应PCNN图像融合 被引量:39

A Novel Image Fusion Algorithm Based on Local Contrast and Adaptive PCNN
下载PDF
导出
摘要 提出了一种结合人眼视觉特性的自适应PCNN图像融合新方法,使用图像逐像素的局部对比度做为PC-NN对应神经元的链接强度,经过PCNN点火获得参与融合图像的点火映射图,再通过判决选择算子,选择各参与融合图像中的明显特征部分生成融合图像.该方法除几个主要参数外,其它参数如阈值调整常量等对于融合结果影响很小,解决了PCNN用于图像处理时参数多且调整困难的问题.实验结果表明,融合效果优于经典的小波变换方法和Laplacian塔型方法. This paper proposes a new fusion algorithm based on the improved pulse coupled neural network(PCNN) model, the fundamental characteristics of images and the properties of human vision system. Compared with the traditional algorithm where the linking strength of each neuron has the same value and its value is chosen through experimentation, this algorithm uses the local contrast of each pixel as its value, so that the linking strength of each pixel can be chosen adaptively. After the processing of PCNN with the adaptive linking strength, new fire mapping images are obtained for each image taking part in the fusion. The clear objects of each original image are decided by the compare-selection operator with the fire mapping images pixel by pixel and then all of them are merged into a new clear image. Furthermore, by this algorithm, other parameters, for example, A, the threshold adjusting constant, only have a slight effect on the new fused image. It therefore overcomes the difficulty in adjusting parameters in PCNN. Experimental results indicate that the method outperforms the traditional approaches in preserving edge information while improving texture information.
出处 《计算机学报》 EI CSCD 北大核心 2008年第5期875-880,共6页 Chinese Journal of Computers
基金 国家自然科学基金(60702063) 广西壮族自治区青年科学基金(桂科青0640067)资助
关键词 图像融合 脉冲耦合神经网络 人眼视觉系统 局部对比度 链接强度 点火映射图 image fusion Pulse-Coupled Neural Network (PCNN) human vision system localcontrast linking strength fire mapping image
  • 相关文献

参考文献19

  • 1Eckhorn R, Reiboeck H J, Arndt Met al. A neural networks for feature linking via synchronous activity: Results from cat visual cortex and from simulations Cotterill R M J ed. Models of Brain Function. Cambridge: Cambridge University Press, 1989 : 255-272.
  • 2Eckhorn R. Neural mechanisms of scene segmentation: Recordings from the visual cortex suggest basic circuits or linking field models. IEEE Transactions on Neural Network, 1999, 10(3): 464-479.
  • 3lzhikevich E M. Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse coupled models. IEEE Transactions on Neural Network, 1999, 10(3) : 499-507.
  • 4lzhikevieh E M. Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory. IEEE Transactions on Neural Network, 1999, 10(3): 508- 526.
  • 5付小宁,殷世民,吴志鹏,刘上乾.红外图像的动态阈值分割[J].光电工程,2002,29(6):57-60. 被引量:39
  • 6Johnson J L, Padgett M L. PCNN models and applications. IEEE Transactions on Neural Networks, 1999, 10(3) :480- 498.
  • 7石美红,张军英,张晓滨,樊秀菊.基于改进型脉冲耦合神经网络的图像二值分割[J].计算机仿真,2002,19(4):42-46. 被引量:25
  • 8马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报,2002,23(1):46-51. 被引量:145
  • 9顾晓东,程承旗,余道衡.基于粗集与PCNN的图像预处理[J].北京大学学报(自然科学版),2003,39(5):703-708. 被引量:8
  • 10顾晓东,郭仕德,余道衡.基于PCNN的图像阴影处理新方法[J].电子与信息学报,2004,26(3):479-483. 被引量:12

二级参考文献32

  • 1章毓晋.图像工程(上)--图像处理和分析[M].北京:清华大学出版社,2000.1-46,81-106.
  • 2[1]Broussard R P, Rogers S K, Oxley M E, et al.. Physiologically motivated image fusion for object detection using a pulse coupled neural network[J]. IEEE Trans. on Neural Networks, 1999, 10(3):554-563.
  • 3[2]Liu X, Wang D L. Range image segmentation using a relaxation oscillator networks[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 564-573.
  • 4[3]Kinser J M. Foveation by a pulse-coupled neural network[J]. IEEE Trans. on Neural Networks,1999, 10(3): 621-625.
  • 5[4]Johnson J L, Padgett M L. PCNN Models and Applications[J]. IEEE Trans. on Neural Networks,1999, 10(3): 480-498.
  • 6[5]Jcaufield H, Kinser J M. Finding shortest path in the shortest time using PCNN's[J]. IEEE Trans.on Neural Networks, 1999, 10(3): 604-606.
  • 7[6]Ranganath H S, Kuntimad G. Object detection using pulse coupled neural networks[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 615-620.
  • 8[7]Wells D M. Solving degenerate optimization problems using networks of neural oscillators[J].Neural networks, 1992, 5(6): 949-959.
  • 9[8]Gu Xiaodong, Wang Haiming, Yu Daoheng. Binary image restoration using pulse coupled neural network. The 8th International Conference on Neural Information Processing, ICONIP-2001,Shanghai, China, 2001: 922-927.
  • 10[9]Johnson J L, Padgett J L, Friday W O. Multiscale image factorization. In Proc. IEEE Int. Conf.Neural Networks, Houston, TX, June 1997: 1465-1468.

共引文献366

同被引文献431

引证文献39

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部