期刊文献+

G-凸空间中的择一原理和极大极小不等式

Alternative Principles and Minimax Inequalities in G-Convex Spaces
下载PDF
导出
摘要 利用Kuo、Jeng和Huang提出的不动点定理,给出G-凸空间中关于3个映射值的非常一般的相交定理.由此结果依次导出了关于极大元、解析择一和极大极小不等式的择一定理. By using a fixed point theorem due to Kuo, Jeng and Huang in G-convex spaces a very general intersection theorem concerning the values of three maps was obtained. From this result successively alternative theorems concerning maximal elements, analytic alternatives and minimax inequalities were derived.
出处 《应用数学和力学》 CSCD 北大核心 2008年第5期601-608,共8页 Applied Mathematics and Mechanics
关键词 G-凸空间 严格KKM性质 不动点定理 极大元 择一定理 极大极小不等式 G-convex space strict KKM property fixed point theorem maximal element altemafive theorem minimax inequality
  • 相关文献

参考文献14

  • 1Lassonde M. Fixed points for Kakutani factorizable multifunctions[ J]. J Math Anal Appl, 1990,152 (1):46-60.
  • 2Tian C G. Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium,and complementarity[ J]. J Math Anal Appl, 1992,170 (2) :457-471.
  • 3Lin L J. Applications of a fixed point theorem in G-convex spaces[ J]. Nonlinear Anal,2001,46(5) : 601-608.
  • 4Kim H, Park S. Remarks on the KKM property for open-valued multimaps on generalized convex spaces[ J]. J Korean Math Soc, 2005,42( 1 ) : 101-110.
  • 5Park S. New subclases of generalized convex spaces[ A]. In: Fixed Point Theory and Applications [ C ]. New York: Nova Sci Publ, 2000; 91-98.
  • 6Park S. Remarks on fixed point theorems in generalized convex spaces[ A]. In: Fixed Point Theory and Applications[ C]. New York: Nova Sci Publ, 2000,135-144.
  • 7Watson P J. Coincidences and fixed points in locally G-convex spaces[ J ]. Bull Austral Math Soc, 1999,59(2) :297-304.
  • 8Kuo T Y,Jeng J C, Huang Y Y. Fixed point theorems for compact multimaps on almost G-convex sets in generalized convex spaces[ J] .Nonlinear Anal,2007,66(2) :415-426.
  • 9Chang T H, Yen C L. KKM property and fixed point theorems[ J ] . J Math Anal Appl , 1996,203 ( 1 ) : 224-235.
  • 10Nikodem K. K-convex and K-concave set-valued functions[ R]. Politechnika Lodzka, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部