期刊文献+

结合主元成分分析的受限玻耳兹曼机神经网络的降维方法 被引量:7

Dimensionality Reduction Method Based on Restrained Boltzmann Machine Neural Network with Principal Component Analysis
下载PDF
导出
摘要 介绍一种能够有效地获取数据本质的基于受限玻耳兹曼机(RBM)神经网络的降维(RBMNNBDR)方法,并结合主元成分分析法(PCA),提出了一种新颖的复合特征降维方法,即PCA-RBMNNBDR.结合人脸研究的几个应用示例,通过实验对PCA-RBMNNBDR、RBMNNBDR和线性判别式分析(LDA)方法进行比较.结果表明,PCA-RBMNNBDR方法在人脸图像降维和分类方面有更好的效果,其分类正确率高于RBMNNBDR和LDA方法. A novel restrained Bohzmann machine neural network based dimensionality reduction (RBMNNBDR) method was introduced. It is improved by combining it with principal component analysis (PCA) to generate a hybrid dimensionality reduction method called the PCA- RBMNNBDR. Then, it is compared with the RBMNNBDR method and LDA method by applying them in face research. The experiments show the PCA-RBMNNBDR method outperforms both RBMNNBDR method and LDA method; furthermore it can efficiently capture the intrinsic manifold structure of the face images.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第4期559-563,共5页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)项目(2007AA01Z100) 国家自然科学基金资助项目(60772097)
关键词 受限玻耳兹曼机 神经网络 降维 主元成分分析法 restrained Boltzmann machine neural network dimensionality reduction principal component analysis
  • 相关文献

参考文献9

  • 1Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 2Roweis S T, Saul I. K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290: 2323-2326.
  • 3Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323.
  • 4Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [J]. Advanees in Neural Information Processing Systems, 2001, 14: 585-591.
  • 5Smolensky P. Parallel distributed processing [C]// Bradford Books. Cambridge: MIT Press, 1986: 194- 281.
  • 6Hinton G E. Training products of experts by minimizingcontrastive divergence [J]. Neural Comput, 2002, 14: 1711-1800.
  • 7Hilton G G, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507.
  • 8Hinton G E, Salakhutdinov R R. Supporting material on science online [EB/OL]. (2006-02-16) [2007-01-06]. http://www. sciencemag. org/cgi/content/full/ 313/5786/504/DC1.
  • 9Du Chun-hua, Yang Jie, Wu Qiang. Extended fitting methods of active shape model for the location of facial feature points[C] //ICVGIP. Madurai: ISRO, 2006: 610-618.

同被引文献106

  • 1张大斌,李红燕,刘肖,张文生.非线性时间序列的小波-模糊神经网络集成预测方法[J].中国管理科学,2013,21(S2):647-651. 被引量:17
  • 2刘凯,张立民,孙永威.基于遗传算法的RBM优化设计[J].微电子学与计算机,2015,32(6):96-100. 被引量:8
  • 3刘洪波,王秀坤,孟军.神经网络基于粒子群优化的学习算法研究[J].小型微型计算机系统,2005,26(4):638-640. 被引量:44
  • 4Cootes T F, Taylor C J, Cooper D H, et al. Active shape models: Their training and application[J]. Computer Vision and Image Understanding, 1995, 61 (1) :38-59.
  • 5Cootes T F, Edwards G J, Taylor C J. Active appearance models [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2001 : 23(6) : 681- 685.
  • 6Edwards G J, Taylor C J, Cootes T F, etal. Statistical models of face images-improving specificity [J]. Image and Vision Computing, 1998, 16(3) : 203-211.
  • 7Cootes T F, Edwards G J, Taylor C J. Active appearance models [J]. 5 th European Conference on Computer Vision, 1998, 2: 484-498.
  • 8Felzenszwalb P, Huttenlocher D. Pictorial structures for objects recognition [J].International Journal of Computer Vision, 2005, 61(1): 55-79.
  • 9Gower J C. Generalized procrustes analysis [J]. Psychometrika, 1975, 40(1): 33-51.
  • 10Paul Viola, Michael Jones. Rapid object detection using a boosted cascade of simple features[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 1: 511-518.

引证文献7

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部