摘要
介绍一种能够有效地获取数据本质的基于受限玻耳兹曼机(RBM)神经网络的降维(RBMNNBDR)方法,并结合主元成分分析法(PCA),提出了一种新颖的复合特征降维方法,即PCA-RBMNNBDR.结合人脸研究的几个应用示例,通过实验对PCA-RBMNNBDR、RBMNNBDR和线性判别式分析(LDA)方法进行比较.结果表明,PCA-RBMNNBDR方法在人脸图像降维和分类方面有更好的效果,其分类正确率高于RBMNNBDR和LDA方法.
A novel restrained Bohzmann machine neural network based dimensionality reduction (RBMNNBDR) method was introduced. It is improved by combining it with principal component analysis (PCA) to generate a hybrid dimensionality reduction method called the PCA- RBMNNBDR. Then, it is compared with the RBMNNBDR method and LDA method by applying them in face research. The experiments show the PCA-RBMNNBDR method outperforms both RBMNNBDR method and LDA method; furthermore it can efficiently capture the intrinsic manifold structure of the face images.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2008年第4期559-563,共5页
Journal of Shanghai Jiaotong University
基金
国家高技术研究发展计划(863)项目(2007AA01Z100)
国家自然科学基金资助项目(60772097)
关键词
受限玻耳兹曼机
神经网络
降维
主元成分分析法
restrained Boltzmann machine
neural network
dimensionality reduction
principal component analysis