期刊文献+

对流占优Sobolev方程的H^1-Galerkin混合有限元方法 被引量:1

H^1-Galerkin Mixed Finite Element Method for Solving Convection-dominated Sobolev Equation
下载PDF
导出
摘要 利用H1-Galerkin混合有限元方法分析了一维线性对流占优Sobolev方程,得到了未知函数和它的伴随向量函数有限元解的最优阶误差估计,该方法的优点是不需验证LBB相容性条件即可得到和传统混合有限元方法相同的收敛阶数. H^1-Galerkin mixed finite element method is used to analyze the one-dimensional convection-dominated Sobolev equations. Optimal error estimates are derived for the finite element solutions of the unknown functions and its gradients. The advantage of this method is that approximation solutions have the same convergence rate as in the classical mixed finite element methods without the LBB consistency conditions.
作者 王焕清 李宏
出处 《三峡大学学报(自然科学版)》 CAS 2008年第2期103-105,共3页 Journal of China Three Gorges University:Natural Sciences
基金 国家自然科学基金项目(10601022) 内蒙古自然科学基金项目(200707010106)
关键词 对流占优Sobolev方程 H^l-Galerkin混合有限元方法 误差估计 convection-dominated Sobolev equation H^1-Galerkin mixed finite element method error esti-mate
  • 相关文献

参考文献3

二级参考文献29

  • 1袁益让 王宏.非线性双曲型方程有限元方法的误差估计[J].系统科学与数学,1985,5(3):161-171.
  • 2J.Cannon,Y.Lin,Non-classical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations,Calcolo,25 (1998),187-201.
  • 3J.Douglas,R.E.JR.Dupont and M.F.Wheeler,H1-Galerkin methods for the Laplace and heat equations,Mathematical Aspect of Finite Elements in Partial Differential Equations,C.de Boor,ed.Academic Press,New York,1975,383-415.
  • 4L.Douglas Lr,J.E.Roberts,Global estimates for mixed methods for second order elliptec equations,Math.Comp,444(1985),39-52.
  • 5E.J.Park,Mixed finite elemtnt method for nonlinear second-orderelliptic problems,SIAM J Numer.Anal,32 (1995),865-885.
  • 6P.A.Raviart and J.M.Thomas,A mixed finite element method for second order elliptic problems,Lecture Notes in Math.606,Springer,Brelin,1977,292-315.
  • 7C.Johnson and V.Thomee,Error estimates for some mixed finite element methods for parabolic type problems,Rairo Numer.Anal,15 (1981),41-78.
  • 8J.Squeff,Superconvergence of mixed finite element methods for parabolic equations,V^2 AN,21 (1987),327-352.
  • 9P.Neittaanmaki and J.Saranen,A mixed finite element method for the heat flow problem,BIT,21 (1981),342-346.
  • 10L.C.Cowsar,T.F.Dupont,and M.F.Wheeler,A priori estimates for mixed finite element methods for the wave equations,Comput,Mehtods Appl.Mech,Engrg,82 (1990),205-222.

共引文献54

同被引文献8

  • 1王瑞文.双曲型积分微分方程H^1-Galerkin混合元法的误差估计[J].计算数学,2006,28(1):19-30. 被引量:50
  • 2Yanping Lin. Ritz-Volterra Projections to Finite Element Spaces and Applications to Lntegro Differential and Related Equations[J]. SIAM J Numer Anal,1991, 28(4) : 1047-1070.
  • 3Stig Larsson, Vidar Thomee. Finite Element Methods for a Strongly Damped Wave Equation[J]. IMA J Numer Anal, 1991,11 (1) : 115-142.
  • 4Pani A K. An H^1-Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations[J]. SIAM J. Numer. Anal. ,1998,25:712-727.
  • 5Cannon J,I.in Y. Non-classical H1 Projection and Calerkin Methods for Nonlinear Parabolic Integro-differencial Equations[J]. Calcolo,1988, 25: 187-201.
  • 6Pani A K, Thomee V, Wahlbn L B. Numerical Methods for Hyperbolic and Parabolic Integro-differencial Equations[J]. J. Integral. Equ. Appl. , 1992, 4:533-584.
  • 7Wheeler M F. A Pripri L2-error Estimates for Galerkin Approximations to Parabolic Differeneial Equations[J]. SIAM J. Nmer. Anal. , 1973, 10: 723-749.
  • 8高理平.粘弹性拟线性波动方程的全离散有限元方法及数值分析[J].山东大学学报(自然科学版),2000,35(3):246-251. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部