期刊文献+

数据挖掘与数量经济学

The Relation between Data Mining and Econometrics
下载PDF
导出
摘要 数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在的有用信息和知识的过程。它是一个涉及多学科领域的新兴学科,并随着这些学科的发展而不断发展。针对信息化社会的迫切需要,本文从数量经济学和数据挖掘的概念出发,深入地分析了这两个领域的联系与区别,详细地探讨了结合数据挖掘乃至人工智能理论来研究数量经济的思路,为积极推动数量经济学的进一步发展提供了可行的研究方法. Data mining is the process of abstracting unaware, potential and useful information and knowledge from plentiful, incomplete, noisy, fuzzy and stochastic data. It is such a new and uprising subject that involves a large number of fields. Meantime, it develops with these subjects. In order to satisfy the stringent requirements of information society, this paper analyzes the relation between econometrics and data mining in depth based on the concepts of those two fields. Then the idea that econometric is studied related to data mining even artificial intelligence is discussed in detail, which provide the feasible research methods for the further development of econometrics.
作者 李清峰
出处 《湖南商学院学报》 2008年第2期20-22,共3页 Journal of Hunan Business College
关键词 数据挖掘 经济研究 数量经济学 人工智能 data mining econometrics economic research artificial intelligence
  • 相关文献

参考文献9

  • 1A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. Proceedings of the 21 st International Conference on Very Large Database, p.p. 432 -443, Sep. 2003.
  • 2Carlos Domingo, Rieard Gavalda, Osamu Watanabe: Adaptive Sampiing Methods for Scaling Up Knowledge Discovery Algorithms. Data Mining Knowledge Discovery Vol2:131 -152 , 2002.
  • 3Gregory Chow, Contributions to Econometrics and Applied Economics [ M] . Peking University Press, Beijing, 2001.
  • 4高铁梅,梁云芳.我国季度宏观经济计量模型--含有误差修正项的联立方程模型,2002年中国数量经济学会年会论文集[M].吉林:吉林大学出版社,2002.
  • 5Caballero, R. J. , Earnings Uncertainty and Aggregate Wealth Accumulation, American Economic Review, 1991,81,859 -871.
  • 6Mills, T. C. , The Econometric Modelling of Financial Time Series (second edition), Cambridge: Cambridge University Press, 1999.
  • 7侯迪,宋擒豹.数据挖掘--构筑企业竞争优势[M].西安:西安交通大学出版社,2001.
  • 8Jiawei Han, Micheline Kambr, Data mining - conception and techniques, Higher education press & Morgan Kaufmann publishers, Beijing, 2001.
  • 9邹晓峰,陆建江,宋自林.基于模糊分类关联规则的分类系统[J].计算机研究与发展,2003,40(5):651-656. 被引量:19

二级参考文献11

  • 1B Lent, A Swami, J Widom. Clustering association rules. In:AlexGray, Per-Ake Larson eds. Proc of the 13th Int'l Conf on Data Engineering. Birmingham, England: IEEE Computer Society, 1997. 220-231.
  • 2B Liu, W Hsu, Y Ma. Integrating classification and association rule mining. In: R Agrawal, P E Stolorz, G Piatetsky-Shapiro eds. Proc of the 4th Int'l Conf on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998. 80-86.
  • 3G Dong, J Li. Efficient mining of emerging patterns: Discovering trends and differences. In, S Chaudhuri, D Modigan eds. Proc of the 5th Int' 1 Conf on Knowledge Discovery and Data Mining. San Diego, CA: ACM Press, 1999. 43-52.
  • 4J Li, G Dong, K Rmxmmohtmarao. Making use of the most expressive jumping emerging patterns for classification. In: Takao Terano, Huan Liu, Arbee L P Chen eds. Proc of the 4th Pacific-Asia Conf on Knowledge Discovery mad Data Mining. Kyoto,Japan: Springer, 2000. 220-232.
  • 5Chan Man Kuok, Aria Fu, Man Hon Wong. Mining fuzzy association rules in database. SIGMOD Record, 1998, 27(1): 41-46.
  • 6R J Hathaway, J W Davenport, J C Bezdek. Relational dual of the c-means algorithms. Pattern Recognition, 1989, 22 (2) : 205-212.
  • 7R Agrawal, R Srikant. Fast algorithms for mining association rules. In: J B Bocca, M Jarke, C Zaniolo eds. Proc of the 20th Int'l Conf on Very Large Databases. Santiago, Chile: Morgan Kaufmann, 1994. 487-499.
  • 8L I Kuncheva. How good are fuzzy if-then classifiers? IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2000,30(4):501-509.
  • 9O Cordon, F Herrera. A three-stage evolutionary process for learning descriptive and approximative fuzzy logic controller knowledge bases from examples.Imernational Journal of Approximate Reasoning, 1997, 17(4): 369-407.
  • 10Z Michalewicz. Genetic Algorithms + Data Structure = Evolution Programs. New York: Springer-Verlag, 1994.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部