摘要
A novel tuned liquid damper (TLD) rectangular tank with two angle-adjustable baffles was pre- sented.The numerical analysis was performed using the commercial code FLUENT.The standard kinetic energy and dissipation rate turbulent model was employed,which was solved using volume of fluid (VOF) method able to treat both the free surface motion and the viscous stresses over the rigid walls accurately.The relationship between the natural periods of water and the angles of its baffles was studied by numerical sim- ulating of a case,and the changes of energy dissipations were investigated.The natural periods and dampers of the novel TLD can be changed in a wide range by adjusting the baffles' angle,thus it is more effective in controlling the vibration of structures in a wide frequency range.
A novel tuned liquid damper (TLD) rectangular tank with two angle-adjustable baffles was pre- sented. The numerical analysis was performed using the commercial code FLUENT. The standard kinetic energy and dissipation rate turbulent model was employed, which was solved using volume of fluid (VOF) method able to treat both the free surface motion and the viscous stresses over the rigid walls accurately. The relationship between the natural periods of water and the angles of its baffles was studied by numerical simulating of a case, and the changes of energy dissipations were investigated. The natural periods and dampers of the novel TLD can be changed in a wide range by adjusting the baffles' angle, thus it is more effective in controlling the vibration of structures in a wide frequency range.
基金
The Research Found of Shanghai Municipal Science and Technology Commission(No.052012014)