期刊文献+

修正的Camassa-Holm及Degasperis-Procesi方程的精确解 被引量:2

Exact solutions for modified forms of Camassa-Holm and Degasperis-Procesi Equations
下载PDF
导出
摘要 运用扩展的双曲函数方法,借助计算机代数系统Mathematica or Maple 10,求出了修正的Camassa-Holm及Degasperis-Procesi方程的精确孤子解和精确行波解,其中有一些新的精确孤子解和行波解.这种方法也适用于求解其它非线性波方程. In the paper,with the aid of computer algebraic system Mathematica or Maple 10, the extended hyperbolic function method was used in order to seek for exact soliton solutions and exact travel wave solutions of the modified forms of Camassa-Holm and travel wave solutions equations also Degas are found by means of peris-Procesi Equations, more new exact soliton solutions and exact this method. The method can be used to solve other nonlinear wave equations also.
出处 《广州大学学报(自然科学版)》 CAS 2008年第2期22-27,共6页 Journal of Guangzhou University:Natural Science Edition
基金 广州市属高校科技计划项目(62035)
关键词 扩展双曲函数法 Camassa—Holm方程 Degasperls—Procesi方程 精确孤子解 精确行波解 extended hyperbolic function method Camassa-Holm Equation Degasperis-Procesi Equation exact soliton solution exact travel wave solution
  • 相关文献

参考文献14

  • 1Camassa R, Holm D. An integrable shallow water equation with peaked solitons [ J ]. Phys Rev Lett, 1993,71(11) :1 661-1 664.
  • 2Degasperls A, Procesi M. Asymptotic integrability symmetry and perturbation theory [ M ]. New York:World Scientific Publishing, 2002:23-37.
  • 3Camassa R. Characteristics and the initial value problem of a completely integrable shallow water equation[ J]. Discrete Continu Dynam Syst-Ser B, 2003,3 ( 1 ) : 115-139.
  • 4Chen C ,Tang M. A new type of bounded waves for Degasperis-Proeesi Equation[ J ]. Chaos, Solitons Fraerals, 2006,27 ( 3 ) : 689-704.
  • 5Qian T,Tang M. Peakons and periodic cusp waves in a generalized Camassa-Holm Equation[ J]. Chaos,Solitons Fraerals, 2001,12:1 347-1 360.
  • 6Liu Z, Qian T. Peakons of the Camassa-Holm equation[ J ]. Appl Math Model, 2002, 26:473-480.
  • 7Lundmark H, Szmigielski J. Muhi-peakon solutions of Degasperis-Proeesi Equation [ J ]. Inverse Probl, 2003,19 ( 6 ) : 1 241-1 245.
  • 8Tian L, Song X. New peaked solitary wave solutions of the generalized Camassa-Holm Equation[ J ]. Chaos, Solitons Fraerals, 2004,19:6214537.
  • 9Liu Z, Wang R ,Jing Z. Peaked wave solutions of CamasSa-Holm Equation[ J]. Chaos, Solitons Fraerals ,2004,19:77-92.
  • 10Mustafa O G. A note on the Degasperis-Procesi Equation [ J ]. J Math Phys, 2005,12 ( 1 ) : 10-14.

同被引文献19

  • 1王景峰,田立新.具有制动动力学的Mkdv-Burgers’方程的backstepping边界控制[J].江苏大学学报(自然科学版),2006,27(1):87-90. 被引量:2
  • 2程悦玲,卢殿臣,田立新,付莲莲.充分非线性K-S方程边界控制指数稳定估计[J].江苏大学学报(自然科学版),2005,26(B12):30-33. 被引量:1
  • 3杜兴华.1+1维Camassa-Holm方程的精确行波解[J].大庆石油学院学报,2006,30(6):96-98. 被引量:3
  • 4田贵辰,郝香芝,陈利霞.广义Camassa-Holm方程的精确解[J].石家庄学院学报,2007,9(3):20-22. 被引量:1
  • 5Camassa R, Holm D D. An integrable shallow water equation with peaked solitons [J]. Phys Rev Lett, 1993, 71 : 1661 - 1664.
  • 6Li Y, Olver P. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation [J]. J Differential Equations, 2000, 162:27-63.
  • 7Lenells J. Traveling wave solutions of the Camassa-Holm equation [J]. J Differential Equations, 2005, 217:393 - 430.
  • 8Shang Yadong, Xiao Bing. Explicit and exact solutions to the Camassa-Holm equation and the Degasperis-Procesi equation [ J ]. Journal of Guangzhou University : Natural Science Edition, 2008,7( 1 ) :1 -6.
  • 9Komomik V. Exact Controllability and Stabilization : The Multiplier Method [M]. John Singapore : Wiley & Sons, 1994.
  • 10Zhou Jiangbo, Tian Lixin. Blow-up of solution of an initial boundary value problem for a generalized Camassa- Holm equation [ J]. Phys Lett A, 2008, 372:3659 - 3666.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部