期刊文献+

Ginzburg-Landau方程的周期解 被引量:2

The time-periodic solution for a Ginzburg-Landau Equation
下载PDF
导出
摘要 利用伽辽金方法、Leray-Schauder不动点原理和先验估计,证明了在带周期外力扰动和周期边界条件的影响下,非线性发展Ginzburg-Landau方程ut=(l+iα)Δu-(k+iβ)u2u+γ+f的时间周期解,其中f(t,x)是一个关于时间变量t的以ω为周期的函数.此方程具有非线性项u2u,给周期解的研究带来技术性困难,文章比较系统地解决了这个问题,给Ginzburg-Landau方程的研究作了补充和完善,同时也给与该方程联系的有限振幅不稳定波比如一些流体动力学系统,Rayleigh-B啨nard对流等方面的研究带来某些理论上的解释. We study nonlinear evolution Ginzburg-Landau Equation ut = (λ + iα)△u - (k + iβ) |u|^2u + γ +f with periodic boundary condition and periodic outside force ,where f(t ,x) is an ω- periodic function of time variable t. The existence of a time-periodic solution is proved by the Galerkin method, Leray-Schauder fixed point theorem and priori estimates. The equation owns the nonlinear |u|^2 u bring quite large technique difficulty for periodic solution investigation, the question was systematically solved in this paper, which complemented and consummated the study of Ginzburg-Landau Equation, at the same time,which of instability waves involved equation ,such as fluids brought some theory explanation for the study of finite amplitude dynamics system, Rayleigh-Benard convection,and so on .
作者 谢春娥 高平
出处 《广州大学学报(自然科学版)》 CAS 2008年第2期32-35,共4页 Journal of Guangzhou University:Natural Science Edition
基金 广东省高校自然科学重点研究项目(05Z026)
关键词 Ginzburg—Landau方程 时间周期解 伽辽金方法 Lelay—Schauder不动点原理 Ginzburg-Landau equation time-periodic solution Galerkin method Leray-Schauder fixed point theoten
  • 相关文献

参考文献4

  • 1Temam R. Infinite dimensional dynamical system in mechanics and physics[ M]. New York: Spring-Verlag ,1988
  • 2Lions J L. Quelques methods de resolution des probemes aux limites non lineaires[M]. Paris, Dunod, 1969.
  • 3Hisko Kato. Existence of periodic solutions of the Navier-Stokes equation[ J ]. Math Anal Appl, 1997,205:141-157.
  • 4Nakao M. Bounded ,periodic and almost periodic solutions of some nonlinear wave equations with a dissipative terms[J]. Math Soc Japan C, 1978,30:375-394.

同被引文献11

  • 1李向正,张金良,王明亮.Ginzburg-Landau方程的一种解法[J].河南科技大学学报(自然科学版),2004,25(6):78-81. 被引量:11
  • 2Ghidaglia J M,Héron B. Dimension of the attractor associated to the Ginzburg-Landau equation[J].Journal of Physics D:Applied Physics,1987,(03):282.
  • 3Doering C,Gibbon J D,Holm D. Low dimensional behavior in the complex Ginzburg-Landau equation[J].Nonlinearity,1988,(02):279.doi:10.1088/0951-7715/1/2/001.
  • 4Wazwaz A-M. Explicit and implicit solutions for the one-dimensional cubic and quintic complex Ginzburg-Landau equations[J].Applied Mathematics Letters,2006,(10):1007.doi:10.1016/j.aml.2005.10.019.
  • 5Dai Zhengde,Li Zitian,Liu Zhenjiang. Exact homoclinic wave and solition solutions for the 2D Ginzburg-Landau equation[J].Physics Letters A,2008,(17):3010.doi:10.1016/j.physleta.2008.01.015.
  • 6Zhong Penghong,Yang Ronghui,Yang Ganshan. Exact periodic and blow up solutions for 2D Ginzburg-Landau equation[J].Physics Letters A,2008,(01):19.doi:10.1016/j.physleta.2008.10.078.
  • 7戴正德;蒋慕蓉;李栋龙.戴维-斯特瓦尔松方程[M]北京:科学出版社,2007114-115.
  • 8李自田.Ginzburg-Landau方程的周期波解与孤子解[J].曲靖师范学院学报,2008,27(6):30-33. 被引量:4
  • 9罗森月,杨荣晖,钟澎洪.三维复Ginzburg-Landau方程的一些精确解[J].肇庆学院学报,2010,31(2):6-8. 被引量:4
  • 10陈兆蕙,李泽华.二维非线性耦合复Ginzburg-Landau方程组的周期波解[J].宝鸡文理学院学报(自然科学版),2011,31(2):6-10. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部