期刊文献+

加权框架的基本性质及与框架乘子的关系 被引量:3

The Properties of Weighted Frames and the Relationship Between Frame Multipliers
下载PDF
导出
摘要 由于加权框架具有良好的冗余性,从而为信号重构和图像处理提供了非常有用的信息。文章首先给出了加权框架的定义并证明了它满足的一些基本性质;接着讨论它与框架算子的联系。从而为加权框架和算子搭起了桥梁,为以后的进一步研究奠定了一些理论基础。 The redundancies of weighted frames provide useful information for signal reconstruction and im- age procession. In this paper, firstly the definition of weighted frames is introduced and some properties are proved; then the relationship between weighted frames and frame multipliers is discussed. So the bridge between weighted frames and multipliers is built, which will be benefit for further study.
出处 《云南师范大学学报(自然科学版)》 2008年第3期1-4,17,共5页 Journal of Yunnan Normal University:Natural Sciences Edition
基金 国家自然科学基金资助项目(资助号:10571113)
关键词 框架 /Jn权框架 框架乘子 frames weighted frames frame multipliers
  • 相关文献

参考文献9

  • 1I. Bogdanova, P. Vandergheynst, J. - P. Antoine, L. Jacques and M. Morvidone, Stereographic wavelet frames of the sphere [ J ], Appl. Comput. Harmon. Anal. 19 ( 2005 ) 223 - 252.
  • 2J - P. Antoine, L. Demanet, L. Jacques, and P. Van- dergheynst, Wavelets on the sphere: Implementation and approximat-ions [ J ], Appl. Comput. Harmon. Anal., 13 (2002) 177-200.
  • 3P. G. Casazza, The art of frame theory[ J] , Taiwan Residents J. Math. 4 (2000) 129 - 202
  • 4O. Christensen, An Introduction to Frames and Riesz Bases [ J ], Birkhauser, Basel, 2003.
  • 5P. Balazs, Basic definition and properties of Bessel multipliers [ J ], Austrian Academy of Sciences, January 2006.
  • 6Peter Balazs, Weighted and controlled frames [ J ], Elsevier Science, 2006.
  • 7P. Balazs, Regular and irregular Gabor multipliers with application to psychoacoustic masking [ J ], PhD thesis, University of Vienna, June 2005.
  • 8P. Balazs, Matrix - representation of operators using frames [ J ] , preprint, 2006.
  • 9P. Balazs, H. G. Feichtinger, M. Hampejs, and G. Kracher, Double preconditioning for Gabor frames [ J ], IEEE Trans. Signal Proc, (2006) in press.

同被引文献29

  • 1熊汉.迭代方法求解矩阵全部特征值问题[J].云南民族大学学报(自然科学版),2005,14(2):159-162. 被引量:1
  • 2黄建蓉.广义拟补问题的迭代算法及其收敛性分析[J].重庆师范大学学报(自然科学版),2006,23(3):23-25. 被引量:1
  • 3王鑫伟,何柏庆,陈文.中心或反中心对称线性方程组的缩减算法[J].南京航空航天大学学报,1996,28(5):599-607. 被引量:3
  • 4彭振赞.几类矩阵扩充问题和几类矩阵方程问题[D].长沙:湖南大学数学系,2003.
  • 5DUFFIN R J, SCHAEFFER A C. A class of nonharmonic fourier series [ J]. Trans Amer Math Soc, 1952, 72: 341-366.
  • 6CHRISTENSEN O. Frame perturbation [ J ]. Proc Amer Math Soc, 1995, 123(4):1217-1220.
  • 7CHRISTENSEN O. A Paley-Wiener theorem for frames [J]. Proc Amer Math Soc, 1995, 123(7) :2199-2201.
  • 8DAUBECHIES I. Ten lectures on wavelets [ M ]. Philadelphia: SIAM, 1992.
  • 9CHRISTENSEN O. An introduction to frames and Riesz bases [ M ]. Boston : Birkhauser, 2003.
  • 10CASAZZA P G. Characterizing Hilbert space frames with the subframe property [J]. Illinois J Math, 1997, 41: 648-666.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部