摘要
对于用户通过哼唱输入进行音乐检索系统中,音符的切分和识别是关键问题之一。本文介绍了利用隐马尔可夫模型对音符进行建模识别,完成用户哼唱输入自动音乐信息检索的前端处理的初步研究结果。文中给出了音乐中音符、静音及停顿模型的拓扑结构,通过规范化的训练建立了49个音符的隐马尔可夫参数模型。在音符的状态切分中,提出了基于k-均值聚类的状态粗切分方法,减少了手工劳作,提高了分割精度。研究结果表明;在没有语言模型的情况下,获得了46.04%的音符识别率,验证了其方法的可行性。本研究在音乐信息检索领域具有重要的意义。
出处
《微计算机应用》
2008年第5期52-55,共4页
Microcomputer Applications
基金
国家自然科学基金委员会资助项目(60673012)