期刊文献+

一种改进的支持向量回归集成算法

ε-insensitive support vector regression ensemble algorithm based on improved Adaboost
下载PDF
导出
摘要 提出了一种基于改进Adaboost的ε不敏感支持向量回归集成算法。该算法使用多个支持向量机按照某种学习规则协调各支持向量机的输出,从而提高其泛化性能。将该方法应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了该集成算法的可行性和有效性。 It proposed an ε-insensitive support vector regression ensemble algorithm based on the improved Adaboost in this paper.Learning by a series of support vector regressions and combining all the results in accordance with some rule,the algorithm improves its regression performance well.Moreover,the proposed algorithm is used in a soft-sensor model for the Bisphenol-A productive process,and the simulation results show the feasibility and effectiveness of the algorithm.
作者 王芳 杨慧中
出处 《计算机工程与应用》 CSCD 北大核心 2008年第3期42-44,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60674092) 江苏省高技术研究项目(工业部分)(the High Technology Research Program of Jiangsu Province under Grant No.BG2006010)
关键词 支持向量回归(SVR) ADABOOST算法 集成算法 Support Vector Regression(SVR) Adaboost algorithm ensemble algorithm
  • 相关文献

参考文献7

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2阎威武,朱宏栋,邵惠鹤.基于最小二乘支持向量机的软测量建模[J].系统仿真学报,2003,15(10):1494-1496. 被引量:102
  • 3Freund Y,Schapire R E.A decision-theoretic generalization of online learning and an application to boosting[J].Journal of Computer and system Science,1997,55(1):119-139.
  • 4Freund Y,Schapire R E.Experiments with a new boosting algorithm[C]//Proceeding of the 13th International Conference on Machine Learning.San Francisco,CA:Morgan Kaufmann,1996:148-156.
  • 5Ridgeway G,Madigan D,Richardson T.Boosting methodology for regression problems[C]//Proc of the 7th Int Workshop on Artificial Intelligence and Statistics.San Francisco,CA:Morgan Kaufmann Publishers,1999:152-161.
  • 6Solomatine D P,Shrestha D L.Adaboost RT:a boosting algorithm fo regression problems[C]//Int Jiont Conf on Neural Networks,Budapest,Hungary,2004:1163-1168.
  • 7Liu Jing-qing,Zhang Tu-qiao.A method determining parameters of SVR model based on probability and statistics[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation,2006:1553-1557.

二级参考文献9

  • 1于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 2Gonzalez G D. Soft sensors for processing plants [A]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C], 1999, 1:59 -69.
  • 3Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants [A]. Proceeding of IEEE International Symposium on Industrial Electronics [C], 1994, 380 -385.
  • 4Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995. First Edition.
  • 5Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999. Second Edition.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 19(3): 293-300.
  • 7Bishop C M. Neural Networks for Pattern Reorganization [M].Oxford University Press, 1995.
  • 8徐敏,俞金寿.软测量技术[J].石油化工自动化,1998,34(2):1-3. 被引量:50
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276

共引文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部