摘要
提出了一种基于改进Adaboost的ε不敏感支持向量回归集成算法。该算法使用多个支持向量机按照某种学习规则协调各支持向量机的输出,从而提高其泛化性能。将该方法应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了该集成算法的可行性和有效性。
It proposed an ε-insensitive support vector regression ensemble algorithm based on the improved Adaboost in this paper.Learning by a series of support vector regressions and combining all the results in accordance with some rule,the algorithm improves its regression performance well.Moreover,the proposed algorithm is used in a soft-sensor model for the Bisphenol-A productive process,and the simulation results show the feasibility and effectiveness of the algorithm.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第3期42-44,共3页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.60674092)
江苏省高技术研究项目(工业部分)(the High Technology Research Program of Jiangsu Province under Grant No.BG2006010)