期刊文献+

基于样例学习的任意光照下的人脸3D重建方法 被引量:3

Example-based learning method for 3D face reconstruction under varying lighting
下载PDF
导出
摘要 待匹配的人脸图像与数据库中的原型图像之间的光照差异是自动人脸识别的主要瓶颈问题之一。提出了一种基于样例学习方式的3D人脸形状重建方法,既可以生成任意光照条件下的数据库中人脸图像,也可以对待识别图像进行重新光照,合成无阴影的图像。该方法在建立人脸数据库时利用光度立体技术分离人脸图像的纹理和形状信息,并用多面体模型在最小二乘意义下恢复其3D信息并更新法向量场以克服阴影误差,从而可以利用计算机图形学的方法合成任意光照条件下和小角度姿态改变时的人脸图像;在识别时采用数据库中3D数据的线性组合形式对输入图像建模,以估计其3D信息,从而可以重新照明。在YaleB人脸数据库上的实验表明,在建立3D人脸数据库后,该方法可以快速恢复输入单幅图像中人脸的3D信息,并生成任意光照条件的该人脸图像。 Illumination changing from picture to picture is main barrier toward full automatic face recognition.In this paper,a novel method to handle lighting conditions is proposed,which can construct an image of human face in database under arbitrary illumination conditions and also can relight the probe image to no shadow image of human face.We carry out the method by decomposing the"texture image" and the"3D shape" based on the photometric stereo technology,and then using the model of polyhedron to get 3D shape of human face by least-squares-fitting.The 3D shape can be used to update the texture to conquer the influence of cast shadow.When the probe image is inputted,the linear combine of normal vector field and texture in example-database can be used to fit the probe image and then relight the image or reconstruct the 3D shape of human face in probe image.Experimental results on YaleB database show that this method can reconstruct the 3D shape of human face surface in probe image effectively,and synthesize the probe human face image under arbitrary illumination conditions.
作者 张军 戴霞
出处 《计算机工程与应用》 CSCD 北大核心 2008年第3期81-84,87,共5页 Computer Engineering and Applications
基金 西华大学青年基金资助项目( No.Q0622608)
关键词 人脸3D重建 光度立体技术 基于样例学习 多面体模型 3D face reconstruction photometric stereo example-based model of polyhedron
  • 相关文献

参考文献15

  • 1柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 2Scheenstra A,Ruifrok A,Veltkamp R C.A survey of 3D face recognition methods[J].LNCS3546:AVBPA 2005:891-899.
  • 3Hallinan P W.A low-dimensional representation of human faces for arbitrary lighting conditions[C]//Seattle USA:IEEE,1994.
  • 4Vetter T,Poggio T.Linear object classes and image synthesis from a single example image[J].IEEE Transactions on Pattern Analysis adn Machine Intellicence,1997,19(7):733-742.
  • 5Belhumeur P N,kriegman D J.What is the set of images of an object under all possible illumination conditions?[J].International Journal of Computer Vision,1998,28 (3):1-16.
  • 6Georghiades A S,Belhumeur P N,Kriegman D J.From few to many:illumination cone models for face recognition under variable lighting and pose[J].IEEE Transactions on Pattern Analysis and Machine Intellicence,2001,23(6):643-660.
  • 7Blanz V,Vetter T.Face recognition based on fitting a 3D morphable model[J].IEEE Transactions on Pattern Analysis and Machine Intellicence,2003,25(8):1063-1074.
  • 8Bronstein A M,Bronstein M M,Kimmel R,et al.3D face recognition without facial surface reconstruction[R].Technion-Computer Science Department,2003.
  • 9卿来云,山世光,陈熙霖,高文.基于球面谐波基图像的任意光照下的人脸识别[J].计算机学报,2006,29(5):760-768. 被引量:27
  • 10HU Yuan-Kui WANG Zeng-Fu.A Low-dimensional Illumination Space Representation of Human Faces for Arbitrary Lighting Conditions[J].自动化学报,2007,33(1):9-14. 被引量:2

二级参考文献82

  • 1柴秀娟,山世光,高文,陈熙霖.基于样例学习的面部特征自动标定算法[J].软件学报,2005,16(5):718-726. 被引量:15
  • 2Brunelli R, Poggio T. Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1052.
  • 3Yang MH, Kriegman DJ, Ahuja N. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(1):34-58.
  • 4Bala J, DeJong K, Huang J, Vafaie H, Wechsler H. Visual routine for eye detection using hybrid genetic architectures. In: Backer E,Gelsema ES, eds. Proceedings of the 13th International Conference on Pattern Recognition. Los Alamitos: IEEE CS Press,1996,3:606-610.
  • 5Reinders MJT, Koch RWC, Gerbrands JJ. Locating facial features in image sequences using neural networks. In Essa I, ed.Proceedings of the 2nd International Conference on Automatic Face and Gesture Recognition Los Alamitos: IEEE CS Press, 1996.230--235.
  • 6Wu JX, Zhou ZH. Efficient face candidates selector for face detection. Pattern Recognition, 2003,36(5):1175-1186.
  • 7Kanade T. Picture processing by computer complex and recognition of human faces [Ph.D. Thesis]. Kyoto: Kyoto University, 1973.
  • 8Feng GC, Yuen PC. Variance projection function and its application to eye detection for human face recognition. Pattern Recognition Letters, 1998,19(9):899-906.
  • 9Feng GC, Yuen PC. Multi cues eye detection on gray intensity image. Pattern Recognition, 2001,34(5):1033-1046.
  • 10Alattar AM, Rajala SA. Facial features localization in front view head and shoulders images. In: Rodrignez J, ed. 1999 IEEE International Conference on Acoustics, Speech and Signal Processing (Icassp). Los Alamitos: IEEE CS Press, 1999,6:3557-3560.

共引文献167

同被引文献20

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部