期刊文献+

网络环境下中文情感倾向的分类方法 被引量:6

Categorization of Chinese Emotional Reaction Types on the Net
下载PDF
导出
摘要 论文从中英文语言差异的角度出发,针对语义倾向方法在中文应用中暴露出来的问题,提出了具体的应用于中文的改进算法。在实验中,运用基金测试文档进行实测以验证改进算法的有效性。实验表明,改进后语义倾向方法在应用于网络环境下中文文本情感倾向分类中具有理想的性能,并具有不需要大量训练样本、对领域知识有较弱的依赖性等特点,展示出良好的应用前景。 In this paper, we propose a Chinese emotional reaction categorization method on the Net based on semantic preference. An data mining technique which is based on semantic preference is used. In terms of difference between Chinese and English, we analyze the problem of semantic preference when applied in Chinese and propose an improved algorithm. In the experiments, new algorithm is applied to Chinese fund reviews. The results show that improved algorithm performs better when it is used to Chinese emotional reaction categorization method on the Web. Compared with the trained classification algorithm, the improved algorithm doesn't need to be trained with a great deal of documents and has little dependence on domain knowledge, which promises a bright future application.
作者 金聪 金平
出处 《语言文字应用》 CSSCI 北大核心 2008年第2期139-144,共6页 Applied Linguistics
关键词 中文情感分类 评价文本分类 语义分析方法 语义倾向 Chinese emotional reaction categorization evaluation text classification semantic analysis semantic preference
  • 相关文献

参考文献4

  • 1Pimwadee Chaovalit & Lina Zhou. Movie review mining: a comparison between supervised and unsupervised classification approaches(A). Proceedings of the 38 th Hawaii International Conference on System Sciences. 2005:939 - 947.
  • 2Ellen Riloff, Janyce Wiebe, Theresa Wilson. Just how mad are you? Finding strong and weak opinion clauses(A). Proceedings of the 19 th National Conference on Artificial Intelligence. 2004 : 761 - 767.
  • 3Peter D. Turney. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews (A). The Association for Computational Linguistics 40 th Anniversary Meeting, New Brunswick, N. J., 2002 : 417 - 424.
  • 4....中国科学院计算所软件室,http://mtgroup.ict.ac.cn/.zhp/ICTCLAS/,,..

同被引文献99

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 3TURNEY P D,LITTMAN M L.Measuring praise and criticism:inference of semantic orientation from association[J].ACM Transactions on Information Systems,2003,21 (4):315-346.
  • 4TSOU B K Y,YUEN R W M,KWONG O Y,et al.Polarity classification of celebrity coverage in the Chinese press[C/OL]//Proceeding of the International Conference on Intelligence Analysis.McLean VA,2-6 May,2005[2009-11-15].https://analysis.mitre.org/proceedings/Final _ Papers _ Files/109 _ Camera _ Ready _ Paper.pdf.
  • 5PANG Bo,LEE L,VAITHYANATHAN S.Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing.Morristown,NJ:Association for Computational Linguistics,2002:79-86.
  • 6WILSON T,WIEBE J,HWA R.Just how mad are you7 Finding strong and weak opinion clauses[C]//Proceedings of the 19 th National Conference on Artificial Intelligence.Menlo Park,CA:AAAI Press,2004:761-767.
  • 7LIU Bing.Web data mining:exploring hyperlinks,contents,and usage data[M].Berlin:Springer,2007:85.
  • 8FREUND Y,SEHAPIRE R E.Experiments with a new Boosting algorithm[C]//Proceedings of the Thirteenth International Conference on Machine Learning.San Fransisco,CA:Morgan Kaufmann Publishers Inc,1996:148-156.
  • 9王根,赵军.基于多重冗余标记CRFs的句子情感分析研究[J].中文信息学报,2007,21(5):51-55. 被引量:32
  • 10Philipp Michel. Support vector machines in automated emotion classification[D}. Churchill College,2003.

引证文献6

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部